
Stochastic Methods For Physics Using Java:
An Introduction

PD DR. F. PETRUCCIONE AND DR. P. BIECHELE

Copyright (c) 2000 Francesco Petruccione and Peter Biechele
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in

the section entitled ”GNU Free Documentation License”.
All programs contained herein are under the GNU GPL.

Version of the 8th May 2000

Contents

I Java 3

0 Introduction to Programming in Java 5
0.1 Programming in Java . 5

0.1.1 General Considerations . 5
0.1.2 Programming Languages – Why Java ? . 5
0.1.3 Java . 6
0.1.4 Brief History of Java . 8

0.2 Tools for Writing and Using Java . 9
0.2.1 Programs: . 9
0.2.2 Java Packages: . 10

0.3 Basic Elements of Java . 11
0.3.1 The “HelloWorld” Program – Applications and Applets 12
0.3.2 Variables . 18
0.3.3 Casting and Type Conversions (Wrapper Classes) 19

0.4 Packages and Import Statements . 20
0.4.1 Packages . 20
0.4.2 The jar Tool . 21
0.4.3 Basic Java Organization . 21
0.4.4 Import statement . 22
0.4.5 Compiling Projects . 23

0.5 Simple Arithmetics, Conditional Statements and Loops 23
0.5.1 Simple arithmetics . 23
0.5.2 Loops . 24
0.5.3 Conditional Statements . 26

0.6 Arrays, Matrices and Strings . 28
0.6.1 Arrays in Java 2 . 30

0.7 Parameters from the Command Line or a HTML File . 30
0.7.1 Parameters from the command line . 30
0.7.2 Parameters from a HTML file . 31

1 Object Oriented Programming 33
1.1 A Classical Example: The Buffon Needle . 33
1.2 The Traditional (Procedural) Approach . 34
1.3 The Object Oriented Approach - Classes and Objects . 36

1.3.1 Definition of Objects . 37
1.3.2 The Code of the Object Oriented Approach . 38
1.3.3 Class variables, Constants and Modifiers . 39
1.3.4 The Constructor . 40
1.3.5 Methods and Class Methods . 41

1.4 Another Example: Calculating the Mean . 42
1.4.1 “Program in One File” Approach . 43
1.4.2 “Traditional Procedural” Approach . 43

I

II CONTENTS

1.4.3 Object Oriented Approach . 44
1.5 Interfaces and Abstract Classes . 46
1.6 Extending (Inheritance) and Overloading (Overriding) Classes 46
1.7 The System Class: Screen-Output and Keyboard-Input 47

1.7.1 Easy Input and Lava Rocks printf() . 48
1.8 Passing Arguments to Methods . 50
1.9 Structure and Overview of Java . 52

1.9.1 Packages in Java 1.1 and Java 2 . 52
1.9.2 Reserved words in Java . 54

1.10 Name Conventions in Java . 54
1.11 Java Documentation . 55
1.12 Applications and Applets Revisited . 55

1.12.1 Applications . 55
1.12.2 Applet . 56
1.12.3 Programs as Applets and Applications . 57

1.13 Higher Mathematics in Java . 59
1.13.1 Standard Mathematical Functions in Java . 59
1.13.2 Numerical Libraries - The JNL . 61
1.13.3 The JSci/JavaSci Package . 63
1.13.4 JNT, Lapack for Java - JamPack and Jama . 66

1.14 Debugging in Java . 66
1.15 Advanced Java Features . 66
1.16 Online References . 67
1.17 Exercises . 68

2 Plotting with Java 71
2.1 The Radioactive Decay . 71

2.1.1 Random Numbers in Java . 72
2.1.2 The Simulation Code . 73

2.2 The Most Easy Plot – The AWT and Applet Packages . 74
2.3 Ptplot – Extending Javas Graphics Capabilities . 83
2.4 Plot Methods in the Simulation Package . 86
2.5 Printing in Java and with Ptplot . 95
2.6 Advanced topics . 97

2.6.1 3D plots in Java – Java3D . 97
2.6.2 Using (system dependent) external programs like gnuplot 99

2.7 Exercises . 101

II Introduction to Stochastic Variables 103

3 Stochastic Variables 105
3.1 The Nature of Probabilities . 105

3.1.1 The Axiomatic Interpretation . 105
3.1.2 The Relative Frequency Interpretation . 105
3.1.3 The Ensemble Interpretation . 107

3.2 The Definition of Stochastic Variables . 108
3.2.1 Further Characterization of Stochastic Variables 109
3.2.2 Some Important Random Variables . 109
3.2.3 Multivariate Random Variables . 112

3.3 The Random Variables Transformation Theorem . 113
3.3.1 The Addition of Stochastic Variables . 114
3.3.2 One–to–One Transformations . 114
3.3.3 The Central Limit Theorem . 115

CONTENTS III

3.3.4 The !2–Distribution . 117
3.4 Examples . 117

3.4.1 File Input/Output in Java . 117
3.4.2 Exception Handling in Java . 126
3.4.3 The Discrete–Time Random Walk . 127
3.4.4 Generation of Gaussian Random Numbers . 131
3.4.5 Estimation . 131

3.5 Beyond this Chapter . 134
3.6 Exercises . 134

4 Data Analysis 139
4.1 Estimation . 139
4.2 Simple Monte Carlo Evaluation of Integrals . 139
4.3 Beyond this chapter . 143
4.4 Exercises . 143

5 Sampling of Probability Distributions 147
5.0.1 A Random Number Generator . 147

5.1 The Generation of Uniformly Distributed Random Numbers 149
5.2 The Transfomation Method: Invertible Distributions . 154

5.2.1 Exponential Distribution . 154
5.2.2 Gaussian Distributed Random Numbers . 155

5.3 The Acceptance–Rejection Technique . 157
5.4 Variance Reduction: Importance Sampling . 159
5.5 Sampling of Polymer Configurations . 162

5.5.1 Ideal Chains . 162
5.5.2 Real Chains . 165

5.6 Exercises . 176

III Stochastic Processes 187

6 Markov Processes and Master Equations 189
6.1 Stochastic Processes . 189
6.2 Markov Processes . 190
6.3 The Differential Chapman–Kolmogorov Equation . 191

6.3.1 The Generator of a Markov Process . 191
6.3.2 The Differential Chapman–Kolmogorov Equation 192

6.4 The Liouville Equation . 193
6.4.1 Example: Classical Statistical Mechanics . 195

6.5 The Master Equation . 196
6.6 Stochastic Simulation . 198

6.6.1 Radioactive Decay . 202
6.6.2 The Poisson Process . 203
6.6.3 The Continuous Time Random Walk . 206

6.7 The Fokker–Planck Equation . 208
6.7.1 The Wiener Process . 210
6.7.2 The Ornstein–Uhlenbeck Process . 216

6.8 Lévy or Stable Distributions . 218
6.8.1 The Cauchy Process . 222
6.8.2 Lévy Processes . 225
6.8.3 The Numerical Generation of Levy Distributed Random Variables 228

6.9 Fractal Space Processes . 228
6.9.1 Levy Flights . 228

IV CONTENTS

6.10 The Continuous Time Random Walk . 232
6.10.1 Lévy Walks . 232

6.11 Exercises . 233

7 Stochastic Differential Equations 239
7.1 The Langevin Equation and Brownian Motion . 241
7.2 Stochastic Integration . 242

7.2.1 Definition of the Stochastic Ito Integral . 242
7.2.2 The Stratonovich Stochastic Integral . 243
7.2.3 Ito Calculus . 244

7.3 Ito Stochastic Differential Equations . 245
7.3.1 Ito’s Formula . 246
7.3.2 The Equivalence of Stochastic Differential Equations and of the Fokker–Planck

Equation . 246
7.4 The Stratonovich Stochastic Differential Equation . 247

7.4.1 Ito or Stratonovich? . 248
7.5 The Euler–Maruyama Method . 249

7.5.1 The Ornstein-Uhlenbeck Process . 250
7.5.2 Noise Induced Transitions . 258

7.6 Stochastic Resonance . 263
7.6.1 Reaction Rate Theory . 265
7.6.2 The Stochastic Resonance . 265

7.7 Exercises . 267

IV Advanced Simulation Techniques 271

8 Molecular Dynamics 273
8.1 Introduction . 273

8.1.1 Statistical Properties of Fluids . 273
8.1.2 Some Historical Comments . 273
8.1.3 The Equations of Motion . 274

8.2 Simple Models and Interaction Potentials . 275
8.3 Algorithms for the Integration of Newton’s Equations of Motion 276

8.3.1 Euler Methods . 276
8.3.2 The Gear Algorithm . 277
8.3.3 Verlet and Beeman Algorithm . 278
8.3.4 The Comparison of the Algorithms . 279

8.4 The Algorithm for the Simulation . 280
8.4.1 Periodic Boundary Conditions . 280
8.4.2 Potential Cutoff . 280
8.4.3 The Minimum Image Convention . 281
8.4.4 Reduced Variables . 281

8.5 Advanced AWT Features and GUIs . 281
8.5.1 Mouse Cursor . 282
8.5.2 ScrollPanes . 282
8.5.3 Properties and Resources . 283
8.5.4 paint(), repaint() and update() . 283
8.5.5 Events . 284
8.5.6 A Complete GUI for the Molecular Dynamics Program 287
8.5.7 Features not Discussed in this Book . 288

8.6 A Molecular Dynamics Program . 288
8.7 The Analysis of the Results . 288

8.7.1 The Pair Correlation Function . 288

CONTENTS V

8.7.2 Thermodynamic Quantities . 291
8.7.3 Dynamical Quantities . 292

8.8 Molecular Dynamics at Constant Temperature . 293
8.8.1 Velocity Rescaling . 293
8.8.2 The Gaussian Thermostat . 294

8.9 Non–Equilibrium Molecular Dynamics . 295

9 Monte-Carlo Methods 301
9.1 The M(RT)2 Algorithm . 301
9.2 The Ising Model . 303

9.2.1 The Model . 304
9.2.2 The Mean Field Theory . 305

9.3 The Monte Carlo Simulation . 308
9.3.1 The Code . 310

9.4 Data Analysis . 311
9.4.1 Estimation of Errors . 312
9.4.2 Finite Size Effects . 314

9.5 The Cluster Algorithm . 315

10 Nonequilibrium Monte-Carlo Methods 321
10.1 The Description of Irreversible Processes . 321
10.2 The Ehrenfest Dog–Flea Model . 322

10.2.1 The Model . 322
10.2.2 The Simulation . 324
10.2.3 Discussion of the Results . 324

10.3 Parallel Progamming with Java - Introduction . 325
10.3.1 What is Parallel/Concurrent Programming?

Why do we have to do it? . 325
10.3.2 The Hardware . 326
10.3.3 The Software . 328
10.3.4 Amdahl’s Law . 331
10.3.5 The Ehrenfest Model using a Parallel Program 332

10.4 Master Equations, Entropy, and the H–Theorem . 342
10.5 Nonequilbrium Thermodynamics . 345

10.5.1 Balance Equations of Fluid Dynamics . 345
10.5.2 The Definition of the Phase Space . 346
10.5.3 The Construction of the Master Equation . 346
10.5.4 The Stochastic Simulation Algorithm . 352

10.6 Hydrodynamic Fluctuations . 354
10.6.1 Couette Flow and Poiseuille Flow . 357

10.7 Homogeneous Turbulence: The Burgers Equation . 357
10.7.1 Homogeneous Turbulence . 357
10.7.2 Burgerlence . 359
10.7.3 The Master Equation Formulation . 360
10.7.4 The Stochastic Simulation . 363

V Applications 369

11 Quantum Mechanics Simulations 371

12 Risc Management 373

VI CONTENTS

A Summary of Java 375
A.1 Basic Syntax . 375
A.2 Structure of a Java program . 375
A.3 The java.lang.System class . 376
A.4 Mathematics . 377

A.4.1 The java.lang.Math class . 377
A.4.2 JNL . 377
A.4.3 JavaSci . 377
A.4.4 Others . 377

A.5 Random Numbers . 377
A.6 Keyboard input and Screen Output . 377
A.7 File I/O . 377
A.8 Ptplot . 377
A.9 AWT . 377
A.10 Conversions and Casting . 377
A.11 Threads . 377
A.12 Printing . 377
A.13 Modifiers . 377
A.14 Debugger . 377
A.15 JDE and Emacs . 377

B Listings and Tables 379
B.1 Listing of the ShowTrace.java Program . 379

C Listings for the Exercises 381
C.1 Listings for Chapter 1 . 381

C.1.1 Calcualtion of ", Exercise 1.1 . 381
C.1.2 Photoabsorption, Exercise 4.1 . 384
C.1.3 Monte-Carlo-Intgegration . 384
C.1.4 Euler Constant . 388
C.1.5 The Standard Deviation . 389

C.2 Listings for Chapter 2 . 390
C.2.1 Random number generator check . 390
C.2.2 Galton Board . 391
C.2.3 Poisson Distribution . 392

C.3 Listings for Chapter 3 . 393
C.3.1 Random number generator . 393
C.3.2 Acceptance-rejection method . 394
C.3.3 Importance Sampling . 395
C.3.4 First passage times . 396
C.3.5 Scaling Behaviour of Random Walk in 2D and 3D 397
C.3.6 Percolation in 2D . 399
C.3.7 First passage times . 402

C.4 Listings for Chapter 4 . 403
C.4.1 One-Step Processes . 403
C.4.2 Quantum Harmonic Oscillator . 408
C.4.3 Growth of competitive population . 408
C.4.4 Random Telegraph Process . 408
C.4.5 Monomolecular Chemical Reaction . 408
C.4.6 The Payroll Process . 409

C.5 Listings for Chapter 5 . 409
C.5.1 Johnson Noise . 409

C.6 additional Listings . 410
C.6.1 Random Walk 1D . 410

CONTENTS VII

C.6.2 Random Walk 2D . 411
C.6.3 Self-Avoiding Random Walk 2D . 412

D Solutions to exercises 417
D.1 Solutions for Chapter 1 . 417
D.2 Solutions for Chapter 2 . 419
D.3 Solutions for Chapter 3 . 422
D.4 Solutions for Chapter 4 . 433
D.5 Solutions for Chapter 5 . 441
D.6 Solutions for Chapter 6 . 443
D.7 Solutions for Chapter 7 . 443

E GNU Free Documentation License, Version 1.1, March 2000 447

F GNU GENERAL PUBLIC LICENSE, Version 2, June 1991 453

VIII CONTENTS

List of Figures

1 Overview of the Java language execution model. 12
2 An HTML file gets loaded into the browser. The browser itself formats the text and if it

finds an applet mark, it starts the applet. 14
3 The output of the javadoc command from the JDK 1.1. 16
4 The output of the javadoc command from the JDK 1.1. 16
5 The output of the javadoc command from the JDK 1.2. 17

1.1 The Buffon needle problem. Definition of the variables x and #. 34
1.2 The Buffon needle problem. The x–# plane (schematically). 35
1.3 A graphical overview of the access control of variables and objects/classes in Java. 41
1.4 The file structure of the JDK distribution, both the binary and the documentation package. 56
1.5 The line of execution in an application and an applet in the appletviewer or the Netscape

Navigator 4.08. For the application only the part above the first line and below the second
line are actually the parts, which can not be avoided. The remaining part is just provided
to show you how to write an application, which can be used as an applet, too. 57

2.1 The peer architecture of the AWT in Java. 75
2.2 This figure shows the inheritance hierarchy of the Applet class. 76
2.3 The hierarchy of the AWT package. 77
2.4 The output of the most easy window with a button using the AWT. 78
2.5 The default behaviour of the painting methods of components in the AWT package. 80
2.6 The output of the easyplot version of the radioactive decay program. The exact solution is

a black line, the simulation a red line. 82
2.7 The class hierarchy of the Ptplot package. 84
2.8 The output of the RadioactiveDecay ptplot.java program. 87
2.9 Two realizations of the stochastic process of the radioactive decay. The first one with linear

y axis scaling and the second one uses a logarithmic y axis scaling. The blue lines are the
exact solution and the red ones are the simulations. The parameters of the simulation were
choosen to be N0 100; p $%t 0 01s 1; %t 1s; tend 300s 91

2.10 The same as figure 2.4, but with different parameters: N0 1000; p $%t 0 03s 1; %t
1s; tend 100s . 91

2.11 The distribution of the number of decays using 100 realizations. The simulation was run
for N0 100 and $ 0 001. 95

2.12 The distribution of the number of decays using 1000 realizations. The simulation was run
for N0 100 and $ 0 001. 96

2.13 An example of the 3D plotting capabilities of JSci. 98
2.14 The configuration of the system. 101

3.1 Simulation of the evolution of the relative frequency of throwing a 4 in play of die. 106
3.2 Overview of the io package in Java 1.1 and related classes. 118
3.3 Connecting two streams together to get advanced functionality. 118
3.4 One realization of a one–dimensional random walk. 129
3.5 Another realization of a one–dimensional random walk. 129

IX

X LIST OF FIGURES

3.6 The distribution of the end–points of the one–dimensional random walk. the program
rwdtn was run for nstep=100 and nreal=1000. 130

3.7 The distribution of the Gaussian random numbers generate with the help of the program
cltgen. The number of random numbers drawn was chosen to be n 1000. 132

4.1 The estimation of pi for n=10,100,1000,10000. The error bars correspond to the standard
deviation of the mean of the estimate. 142

4.2 The scoring method. The continuous line represents the function 1 x2 143

5.1 Successive values in a series of random numbers generated for a=5, c=3, M=8. Note that
the even numbers are always one less then the odd ones! 150

5.2 Successive values in a series of 3000 random numbers generated for a 65539, c 0,
M 231 1. 152

5.3 Histogram for a series of 3000 random numbers generated for a 65539, c 0, M 2 31 1.152
5.4 Correlation between successive values in a series of 3000 random numbers generated for

a 65539, c 0, M 231 1. 153
5.5 Correlation between successive values R i R i 1 R i 2 in a series of 3000 random

numbers generated for a 65539 c 0 M 2 31 1. 153
5.6 Histogram of 1000 exponentially distributed random numbers with mean 1 generated ac-

cording to the transformation method. The continuous line represents the expected expo-
nential distribution. 156

5.7 Histogram of 1000 Gaussian distributed random numbers with mean 0 and variance 2 gen-
erated according to the Box-Muller method. The continuous line represents the expected
Gaussian density. 157

5.8 Histogram of 5000 random numbers distributed according to p x 3x 2 generated with the
von–Neumann acceptance–rejection technique. The continuous line represents the exact
density p x . 160

5.9 Ten realizations of a two–dimensional random walk on a square lattice. 165
5.10 Attrition problem: The average number of trials necessary to generate polmers of a given

length increases exponetially with the lentgth of the polymers 167
5.11 The flow diagram of the program saw2.m. 170
5.12 Five realizations of a two–dimensional self–avoiding random walk on a square lattice gen-

erated by the simple sampling technique. 174
5.13 The mean square end–to–end distance of a self–avoiding random walk generated by the

simple sampling technique as a function of the polymer length. 175
5.14 The CPU time for generating 10 realizations of a self–avoiding random walk by the simple

sampling technique as a function of the polymer length. 175
5.15 Five realizations of a two–dimensional self–avoiding random walk on a square lattice gen-

erated by the importance sampling technique. 176
5.16 The mean square end–to–end distance of a self–avoiding random walk generated by the

importance sampling technique as a function of the polymer length. 177
5.17 The CPU time for generating 10 realizations of a self–avoiding random walk by the impor-

tance sampling technique as a function of the polymer length. 177
5.18 The mean square end–to–end distance of a self–avoiding random walk estimated from

a sample of 500 realizations by the importance sampling technique as a function of the
polymer length. 178

5.19 The CPU time for generating 500 realizations of a self–avoiding random walk by the im-
portance sampling technique as a function of the polymer length. 179

6.1 Overview of the theor of stochastic processes. 194
6.2 Flow chart of a stochastic simulation of a one–step process. The symbols used are ex-

plained in the text. 200

LIST OF FIGURES XI

6.3 Stochastic simulation of radioactive decay. The initial number of decaying nuclei is n0
100. tend is 30 and the ensemble average was taken over 10 realizations. The decay rate
is & 0 1. 203

6.4 Stochastic simulation of the Poisson process. The one–sided random walk starts at nstart=0.
tend is 30 and nreal=1. The jump rate is q=1. 205

6.5 Stochastic simulation of the Poisson process. The one–sided random walk starts at nstart=0.
tend is 30 and nreal=20. The jump rate is q=1. 206

6.6 Stochastic simulation of the Poisson process. The one–sided random walk starts at nstart=0.
tend is 30 and nreal=20. The jump rate is q=10. 207

6.7 Stochastic simulation of the continuous time random walk. The random walk starts at
nstart=0. tend is 30 and nreal=20. The jump rate is q=1. 208

6.8 Flow diagram of the program wiener.m . 213
6.9 One realization of the Wiener process. The parameters used in the simulation are xs-

tart=0, tend=50, deltat=0.01, and nreal=1. 214
6.10 One realization of the Wiener process. The parameters used in the simulation are xs-

tart=0, tend=50, deltat=0.01, and nreal=1. 215
6.11 One realization of the Wiener process. The parameters used in the simulation are xs-

tart=0, tend=5, deltat=0.01, and nreal=1000. 215
6.12 The flow diagram of the simulation of the Ornstein-Uhlenbeck process. 217
6.13 One realization of the Ornstein–Uhlenbeck process. The parameters used in the simulation

are xstart=5, tend=10, deltat=0.01, nreal=1, q=1, and D=1. 219
6.14 The average over 10 realizations of the Ornstein–Uhlenbeck process. The parameters used

in the simulation are xstart=5, tend=50, deltat=0.01, nreal=10, q=1, and D=1. 219
6.15 Two possible realizations of the Cauchy process. 225
6.16 The Weierstrass function G k for M=0,1,2,3,4,5 in different colors. The parameters are

a 2 b 3. 230

7.1 Results of the simulation of the Ornstein–Uhlenbeck process with the stochastic Euler
method for different values of the time step. The parameters of the Ornstein-Uhlenbeck
process are q=1, D=1. The simulation was run from tstart=0 to tend=4 for 50000
realizations. The timesteps used are deltat=0.2, 0.1, 0.05, 0.025. 258

7.2 Histogram of the invariant density of the stochastic differential equation with multiolicative
noise. The simulation was run from tstart=0 to tend=4 for 5000 realizations. The
initial condition was chosen to be xstart=0.5. The timestep used was deltat=0.01
and the multiplicative noise constant was epsilon=1. 262

7.3 Histogram of the invariant density of the stochastic differential equation with multiolicative
noise. The simulation was run from tstart=0 to tend=4 for 5000 realizations. The
initial condition was chosen to be xstart=0.5. The timestep used was deltat=0.01
and the multiplicative noise constant was epsilon=3. 262

7.4 The potential U x a x2
2 b x4

4 for a 1 and b 1. 264

8.1 Plot of the Lennard–Jones potential VLJ . The potential is characterised by the length scale
' and by the energy (. 275

8.2 Plot od the hard shere potential. 275
8.3 Plot of the square well potential . 276
8.4 Plot of the soft sphere potential for) 1 and) 12. 276
8.5 Periodic boundary conditions. 280
8.6 The minimum image convention. 281
8.7 The most important event classes in Java and their structure. In these classes you can find

the events available in Java. There are many events also outside of the AWT, which are not
relevant for us. 285

8.8 The most important AWT listeners and their class structure. Look at the API documentation
of the listeners to find all the available methods to be overriden, this shows you what kind
of actions are possible to detect. 286

XII LIST OF FIGURES

8.9 The available adapter interfaces for the AWT listener. These classes ease the writing of
listeners by only overriding the methods you need, you just implement the appropriate
event adapter interfaces. 286

8.10 Qualitative behaviour of the pair correlation function g r for a Lennard–Jones fluid. . . . 289
8.11 The pressure . 291
8.12 The temperature as a function of time in Molecular Dynamic simulation of a micro-canonical

ensemble. 292
8.13 Plot of the velocity autocorrelation function of a Lennard–Jones fluid. 292
8.14 The velocity field in a plane Couette flow. 296
8.15 Moving periodic images for the simulation of a plane Couette flow. 296

9.1 The graphical solution of Eq. (9.2). 306
9.2 Configurations of the two dimensional Ising model on a 100 100 lattice at * * c

0 5 0 7 0 9 0 95 0 98. Notice the growth of correlations from hight temperatures to the
critical region. 310

9.3 Magnetisation as a function of the reduced temperature kT 2J for L 40, L 50 and
L 100. 311

9.4 Magnetic susceptibility. 311
9.5 The energy as a function of T. 311
9.6 The specific heat as a function of T. 312
9.7 Estimates for '2 m obtained with the blocking method. 314
9.8 Finite size scaling behaviour of the two dimensional Ising model on L L square lattices.

(Exact solutions of Ferdinand and Fisher??). 315
9.9 Helical boundary conditions . 317
9.10 The stages of the Swendsen–Wang algorithm for a 6 6 array with helical boundary con-

ditions. IM WESENLICHEN DIE FIGUR AUS MACKEOWN, S.375 MIT ANDEREN
RANDBEDINGUNGEN. 318

10.1 The three levels of description: macroscopic, mesoscopic, and microscopic. 322
10.2 The different networking models and cables used to connect the CPUs in a “Parallel Com-

puter”. The years just represent the “standard” network used for most permanently con-
nected systems. This is by no means a complete overview, but it should give an impression
of what can be expected. The speed denoted above the network protocol is the theoretical
maximum value. In reality you can be lucky, if you accomplish 1/10th of this value. 327

10.3 Possible software models to be used for parallel programming. For a description of the
used abbreviations see table 10.3. Difficult/Easy programming refers to the time needed to
implement parallel algorithms using a certain model. 329

10.4 Amdahls law with some examples for the value of the serial part f of a program. 331
10.5 A multitasking operating system employing a Java Virtual Machine, which runs multiple

threads. 337

A.1 The class structure of a Java program, either application or an applet. 376

List of Tables

1 Performance Table. 7
2 Primitive data types in Java. The byte and char data types have been introduced in Java 1.1

and in Java 2 there was a void type added. 18
3 Options of the jar command. The jar tool is included in the JDK. 22
4 A comparison of the different memory allocation commands in different languages. 28

1.1 Overview of some available modifiers in Java, see also Figure 1.3. For a complete overview
take a look at page 230-234 in Flanagan [1997]. 40

1.2 All methods belonging to the (abstract) java.lang.Object class. 47
1.3 All possible modifiers to be used in the format string given to the printf()/sprintf()/fprintf()

methods supplied by the Lava Rocks package. 49
1.4 Overview of the mathematical methods available in Java 1.1 in the java.lang.Math class. . 60
1.5 A short list of JNL classes supplied with JNL 1.0 revision f for the new JDK 1.2. There are

two 1.0f versions around, one which works with both Java 1.1 and Java 2 and one which
has some trouble with Java 2. 62

1.6 An overview of the most important methods supplied by the Complex class of the JNL. z
represents a complex number (Complex z;). 63

1.7 Some of the interesting classes and methods in the JSci/JavaSci package. 65

2.1 A list of most of the defined AWT components of the Java 1.1 API and the Java2 API
(Swing). In Java2/Swing all the AWT Components are also available with Swing by just
adding a capital J to the beginning of the components (e.g. JButton instead of Button,
JComponent instead of Component). 79

2.2 All possible layouts in the AWT package of Java 1.1. 79
2.3 List of some of the methods contained in the Graphics class. All method arguments are

of type integer, unless otherwise stated. More methods are available in the much more
powerful Java2D API coming with Java2. 80

2.4 Overview of all the Ptplot methods in the Plot and PlotBox classes. 88

3.1 Some of the important exceptions in the java.lang.Throwable class. A detailed list
is in the API documentation. RTE means RuntimeException and therefore do not
have to be catched. 127

5.1 Series of random numbers for the linear congruential generator of the form I n 1 5In c
mod 8 . 151

5.2 Monte–Carlo estimates of the integral (5.8) using the standard method p x 1 and the
importance sampling method p x aexp x . 161

5.3 Values of R2 as functions of N, for two–dimensional random walks generated by the
simple sampling (ss) and by the importance sampling (is) technique. 176

5.4 Mean square end–to–end distance estimated by importance sampling from a sample of 500
realizations. 178

7.1 Multiplication table for products of stochastic differentials. 245

XIII

XIV LIST OF TABLES

7.2 Results of the simulation of the Ornstein–Uhlenbeck process with the stochastic Euler
method for different values of the time step. The parameters of the Ornstein-Uhlenbeck
process are q=1, D=1. The simulation was run from tstart=0 to tend=4 for 50000
realizations. The timesteps used are deltat=0.2, 0.1, 0.05, 0.025. 258

8.1 The system of units used in molecular dynamics simulation of particles interacting via a
Lennard–Jones potential. The numerical values for ', (and m are for argon. The quantity
k is Boltzmann’s constant and has the value k 1 38 10 23J K. The unit of pressure is
for a two–dimensional system. 282

8.2 A list of important properties to be read out by a Java program. 283

9.1 Comparison of the critical exponents for the 2 and 3 dimensional Ising model with mean
fied theory. 308

10.1 Abbreviations used in the area of networking models. 327
10.2 Abbreviations used for describing computer hardware. 328
10.3 Abbreviations used for the models in parallel programming. 329

Listings

Listings Java/HelloWorld Application.java . 12
Listings Java/HelloWorld Applet.java . 14
Listings Java/call HelloWorld Applet.html . 14
Listings Java/HelloWorld.java . 22
Listings Java/DataMean.java . 24
Listings Java/DiceGame.java . 27
Listings Java/DataMeanArray.java . 29
Listings Java/ParamCommandLine.java . 31
Listings Java/ParamApplet.html . 31
Listings Java/ParamApplet.java . 32
Listings Java/BuffonProcedural.java . 34
Listings Java/Data.java . 37
Listings Java/Needle.java . 38
Listings Java/TestFinal.java . 40
Listings Java/Buffon.java . 41
Listings Java/Moments all.java . 43
Listings Java/Moments procedural.java . 44
Listings Java/Moments procedural.java . 44
Listings Java/MomentsData.java . 44
Listings Java/Moments object.java . 45
Listings Java/System Class.java . 47
Listings Java/testArray.java . 51
Listings Java/TestPassingFunctions.java . 52
Listings Java/test Applet.java . 56
Listings Java/TestAppletApplication.java . 58
Listings Java/Test Roundings.java . 59
Listings Java/Test Roundings.output . 60
Listings Java/RadioactiveDecay.java . 73
Listings Java/PlotEasy.java . 74
Listings Java/RadioactiveDecay easyplot.java . 81
Listings Java/Ptplot Demo1.java . 83
Listings Java/Ptplot Demo2.java . 84
Listings Java/RadioactiveDecay ptplot.java . 85
Listings Java/RadioactiveDecay ptplot2.java . 90
Listings Java/RadioactiveDecay ptplot2.java . 92
Listings Java/RadioactiveDecay printing.java . 96
Listings Java/JSci3DGraph.java . 97
Listings Java/Gnuplot.java . 99
Listings Java/Gnuplot.gnu . 100
Listings Java/DirectoryListing.java . 100
./Listings/relfreq.m . 106
Listings Java/FileWriteSimple.java . 117
Listings Java/FileReadSimple.java . 119

XV

XVI LISTINGS

Listings Java/StringBufferDemo.java . 120
Listings Java/FileSaveFormatted.java . 121
Listings Java/FileBinary.java . 122
Listings Java/FileCheck.java . 123
Listings Java/RedirectStandard.java . 124
Listings Java/GZIPSaveArray.java . 125
./Listings/rwdt.m . 128
./Listings/rwdtn.m . 130
./Listings/cltgen.m . 131
./Listings/mcpi.m . 141
./Listings/mcpiscore.m . 142
Listings Java/RandomNumber.java . 147
Listings Java/UseRandomNumber.java . 148
./Listings/trandom1.m . 149
./Listings/random1.m . 151
./Listings/expdistr.m . 155
./Listings/gaussdistr.m . 156
./Listings/neumann.m . 159
./Listings/mciis.m . 160
./Listings/rw2d.m . 163
./Listings/rw2dsa.m . 166
./Listings/rw2dsa2.m . 170
./Listings/onestep.m . 199
./Listings/decaymaster.m . 203
./Listings/poissonmaster.m . 205
./Listings/walkmaster.m . 207
./Listings/wiener.m . 212
./Listings/ornstein.m . 217
Listings Java/CauchyProcess.java . 223
Listings Java/SDE.java . 250
Listings Java/OrnsteinUhlenbeck.java . 256
Listings Java/NoiseInducedTransition.java . 260
Listings Java/ScrollPaneDemo.java . 282
Listings Java/ClosableFrame.java . 284
Listings Java/ButtonListenerTest.java . 287
Listings Java/DogFlea.java . 332
Listings Java/ConvertSymphony.java . 334
Listings Java/DogFleaCalc.java . 338
Listings Java/DogFleaThreads.java . 339
Listings Java/ShowTrace.java . 379
Listings Java/Pi Calc plain.java . 381
Listings Java/Pi Calc.java . 382
Listings/photoabsorbtion.m . 384
Listings/mcistandard.m . 384
Listings/hitandmiss.m . 386
Listings/hitandmiss2.m . 386
Listings/darts.m . 388
Listings/variance.m . 389
Listings/momentsrand.m . 390
Listings/pokertest.m . 390
Listings/galton board.m . 391
Listings/poisson.m . 392
Listings/linear con.m . 393
Listings/rejection.m . 394

LISTINGS XVII

Listings/importance.m . 395
Listings/first passage.m . 396
Listings/rw scaling.m . 397
Listings/percolation.m . 399
Listings/einstein solid.m . 402
Listings/onestep.m . 403
Listings/onestepfast.m . 405
Listings/qmharmoscimaster.m . 408
Listings/nonlingrowthmaster.m . 408
Listings/telegraphmaster.m . 408
Listings/reactionmaster.m . 408
Listings/payrollmaster.m . 409
Listings/sdeornstein.m . 409
Listings/rw1d.m . 410
Listings/rw2d.m . 411
Listings/rw2dsa.m . 412

Instructions for the use of the CD ROM

Install Toolkit

1

2 LISTINGS

Part I

Java

3

Chapter 0

Introduction to Programming in Java

0.1 Programming in Java

0.1.1 General Considerations
This book is about stochastic simulation methods and their applications to physical systems. The material
is presented at an introductory level. We do not assume any prior knowledge on probability theory or on
the theory of stochastic processes. We assume only the material known from the introductory courses in
theoretical physics. The style of the presentation will be as informal as possible and as precise as necessary.

0.1.2 Programming Languages – Why Java ?
It is clear that it is not possible to teach simulation methods without performing some numerical exper-
iments in the classroom and that it is impossible for the students to learn stochastic simulation methods
without implementing the algorithms. Therefore, the theory and the corresponding algorithms will be
presented in a highly interconnected, and, we hope, organic way.

In order to stick to this idea it was necessary to choose a programming language. The obvious criteria
for taking such a decision are [?]

1. Efficiency,

2. Understandability,

3. Good graphics,

4. Standard/Portable,

5. Cost,

6. Parallelizability.

The first criterion is of course very important because already simple stochastic algorithms require a con-
siderable amount of CPU time. A secondary aim of the course is to make the student acquainted with a
programming language “in action” so they should learn something about a “good programming style” for
real-life problems. Visualization of the results obtained allows to understand more easily what is going on
physically. So the interface between program and visualization tool/graphical output should be comfort-
able. Last but not least the availability of the program should be guaranteed. The corresponding compilers
should be available at low, in the ideal case at no cost to the students for home exercises. Furthermore, they
should be portable on PCs with Windows or Linux operating systems, on Macintosh and on workstations
from the UNIX world (IBM AIX, Solaris, SGI Irix, ...). Since almost all universities do have a high–
performance parallel computer the language should also allow to demonstrate high–performance parallel
algorithms.

5

6 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

Because of our background of convinced Fortran users we considered the following alternatives: our
beloved Fortran, MATLAB, a language which is popular in the engineering and applied mathematics com-
munities, and Java, the “Wunderkind” of software developers and of the Internet community. We have not
considered C, C++ for the simple reason that we never felt the necessity to learn them.

All the languages considered in some sense satisfy the above criteria. All are more or less portable on
different platforms (at different expenses), all allow the use of good visualization tools (at different prices),
and, of course, all are clean. But not all are equally powerful.

We checked the power (the efficiency) of the languages considered by the following benchmark, which
represent the prototype of a stochastic simulation. We generated 100 trajectories of a typical one-step
stochastic process (see Chapter ?? and compared the CPU times obtained by different languages. The
result of the benchmarks are summarized in Table 1. The listings of the corresponding programs are
presented in the appendix.

Of course, in the above test we have not optimized the algorithm to the different platforms. Neverthe-
less, the table clearly shows that MATLAB is very slow. Even the compiled version of MATLAB is by a
factor of about 100 slower compared to the Fortran code. This is a good reason to disregard MATLAB!

Now we have to decide between Java and Fortran. As can be read off from the Table 1 the criteria of
numerical efficiency clearly speaks for Fortran. The argument in favour of Java which compensates the
slightly slower performance – Today!, in future this might be different. – is its portability and the free
availability of the compiler and of the visualization tools. Java runs on every platform and it is available at
no cost. We do not even have to change any line of code to get a faster performance, because we just have
to get a faster Just in Time compiler or the new HotSpot technology, which improve performance by factors
of 2 to 10 or even more. This will free the programmer from time consuming and difficult optimizaions.
There is for example a compiler called High Performance Java by IBM. It generates much faster code on
IBM workstation compared to the JDK from SUN and the speed is already comparable to C/C++. For a
comparison with this compiler see [?].

Last but not least, we want to mention a further advantage of Java. It seems [?] that there is a great
need for Java programmers in various branches of industry today. This need will even grow in future years.
So learning Java might be a kind of “life insurance” for students of physics. It will put them in the position
to find a good job in the software industry.

0.1.3 Java
In Chapter 0.1.2 we have given some good reasons to choose Java as the programming language for our
purposes. Here we want to mention some more technical points, from a computational science point of
view, in favour of Java. Some of the points are very technical and are only be understood with knowledge
about pogramming. So for beginners it might be useful to come back again here after learning Java in the
next chapters.

SUN Microsystems has described Java as follows [?]:

Java: A simple, object–oriented, distributed, interpreted, robust, secure, architecture neutral,
portable, high–performance, multi-thread, and dynamic language.

Let us try to understand roughly what is meant by the above adjectives.
Java is simple in the sense that the number of language constructs has been kept as small as necessary.

For ease of migration from other languages some basic language elements resemble C or C++. However,
some features of these languages which were rarely used and which have been considered to be unsafe
have been omitted. For example, in Java there is no goto statement; instead it has labelled break and
continue statements. The preprocessor of C has been eliminated; the program you write is the program that
the compiler sees. In Java there are no operator overloading and no multiple inheritance features known
from C++. But you can use interfaces to simulate multiple inheritance and argument overloading is also
possible. One major simplification is that Java does not have pointers! In Java memory is taken care of
automatically, so the programmer is not responsible for the management of memory space. In particular,
Java implements an automatic garbage collector.

Java is an object–oriented language and you do not have to think in a procedural–based way, as it is
the case in Fortran for example. In order to solve problems in Java we are forced to use the notions of

0.1. PROGRAMMING IN JAVA 7

Table 1 Performance comparison for different languages, operating systems (OS), and platforms. The test
program is a one-step stochastic process. We create 100 realizations, g n 0 4n r n 0 5n (see Chapter
??). On Windows 95 the JIT from Symantec is included and automatically used, when executing programs
with the java command in the JDK. The TYA JIT for Linux is freely available and easy to install. Usage:
with the Java virtual machine of the JDK use -Djava.compiler=tya or set the environment variable
JAVA COMPILER=tya. To avoid using the JIT use option -nojit up to JDK1.1.7 on Windows or for
all other platforms set the environment variable JAVA COMPILER=none.

Language OS Software Machine CPU time
Fortran 90 Linux Nag f90 Compiler

V2.2(260)
Pentium 133 2.1 sec.

Linux Nag f90 Compiler
V2.2(260) with -O3

Pentium 133 2.4 sec.

Linux Nag f95 Compiler
V1.0(436)

Pentium 133 2.3 sec.

Linux Nag f95 Compiler
V1.0(436) with -O4

Pentium 133 2.3 sec.

Linux Pallas f95 Compiler
V3.0-3

Pentium 133 1.3 sec.

Linux Pallas f95 Compiler
V3.0-3 with -O4

Pentium 133 1.4 sec.

C Linux GCC 2.7.2.3 Pentium 133 2.1 sec.
Linux GCC 2.7.2.3 with -

O3
Pentium 133 2.0 sec.

C++ Linux egcs-1.0.3 Pentium 133 2.2 sec.
Linux egcs-1.0.3 with -O3 Pentium 133 1.8 sec.

Java Linux JDK 1.1.7, no JIT Pentium 133 16 sec.
Linux JDK 1.1.7, with JIT

TYA (V1.3)
Pentium 133 10 sec.

Linux JDK 1.1.7, no JIT DEC Alpha 21164 600 6 sec.
Win95 JDK 1.1.7, with

Symantec JIT
Pentium 133 9 sec.

Win95 JDK 1.1.7, no JIT Pentium 133 19 sec.
Win95 JDK 1.2, with

Symantec JIT
Pentium 133 8 sec.

Win95 JDK 1.2, no JIT Pentium 133 22 sec.
Matlab Win95 Matlab 5.1 Pentium 166 330 sec.

Win95 Matcom Compiler
V3.0 with Borland
C++ 5

Pentium 166 70 sec.

Linux Matlab 5.2 Pentium 133 224 sec.
Maple Linux Maple V Rel. 4 ???
Mathematica Win95 Mathematica V3.0 Pentium 133 28 Min.

Win95 with Compiler Pentium 133 26 Min.

8 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

classes and objects. Every object has a class that defines its data and the methods that operate on these
data. Classes are hierarchically arranged. A subclass inherits the behaviour of its superclass. A class is the
basic unit of compilation and of the execution in Java. All Java programs are classes. Of course you do not
have to use the object oriented programming style, you can still stick to the procedural style in Java too.

Java is a distributed language, which simply means that it provides a lot of tools for networking. Java
is the programming language of the Internet.

Java is an interpreted language. The Java compiler compiles the Java source code into Java byte–code,
which is the machine language for the Java Virtual Machine (JVM). The JVM is an abstract machine which
runs on each system that supports Java. Programs written in other languages may also be compiled into
Java byte-code.

Java is robust. Java contains a feature, called exception handling, which simplifies the task of error
handling and recovery.

Java is secure. Since Java has been designed for distributed applications high security standards have
been implemented. For example, direct access to memory is not allowed. Java contains four different levels
of security checks and enforcements to prevent the introduction of viruses. In particular there is protection
against deleting and modifying files.

Java is architecture neutral and portable. The byte-code format is always the same regardless of the
platform on which the Java compiler runs. Furthermore, there are no “implementation defined” behaviours
in Java. For example, Java specifies the size of each primitive data type. The integer types byte, short, int,
long take 8, 16, 32, 64 bit of memory, respectively. This also avoids the use of any preprocessor available
to all other languages, excessively used in C and C++ to catch all platform relevant parameters.

Java is a high–performance language. Usually Java is run using an interpreter, the so-called Java Virtual
Machine. It is however possible to run Java with a Just In Time (JIT) compiler, which translates the
bytecode to native code before the code gets executed. JIT compiling increases the performance of Java
considerably.

Java is multi-threaded. It supports multiple threads of execution which can handle different tasks.
Multi-threading increases the interactive performance of Java.

Java is dynamic. Any Java class can be loaded into a running Java interpreter at any time.
Java includes the zlib compression library in the 1.1. language specification. These are the freely

available compression libraries used in the well-known gzip compressor. That makes it very easy to write
and read compressed data.

0.1.4 Brief History of Java
Java started off in 1991 as a project by James Gosling, which at that time was called Oaks. Its purpose was
focussed on the use as operating software (OS) for consumer electronic devices. A small group decided
to adapt Oak to web technology and released the first version of Hotjava (a web browser, at that time still
called WebRunner) in late 1994. After a presentation given by James Gosling about the byte codes used
by Oak in 1995, the new language JAVA was officially announced in April 1995 (Java 1.0), including the
first official release of Hotjava. The announcement was the source of a hype, because Java is ideally suited
for the heterogenous world of networked computers seen today and the Java philosophy allows for “Write
Once, Run Everywhere” including graphical capabilities.

Then in January 1996 the first version of the Java Development Kit (JDK) was released by SUN. Soon
the language was licensed by many companies, most notably Netscape, which included a Java Virtual
Machine (JVM) into their widely used browser Netscape Navigator. Then in early 1997 SUN released the
second version of Java: the new language specification Java 1.1 and the development kit for it, JDK 1.1.

Meanwhile most of the browsers adapted the new Java 1.1 language specification. Also many new
APIs (Application Programmers Interfaces) like Java 3D or most important the JFC 1 have appeared, some
of them have been officially included in the Java 1.2 specifications (now called Java 2). Together with
the JDK 1.2, Java 2 appeared in January 1999. But no browser supports this standard right now, although
most of the software available for Java and written in Java seem to be already adapted to the new standard.

1The Java Foundation Classes, which consist of the Swing API and many more components like (an almost complete set of) the
Internet Foundation Classes (IFC). You can either use Java 1.1 together with the JFC 1.1 for Swing 1.1 or Java 2, which already
includes JFC 1.1 for Swing 1.1 and also Java 2D and some more new APIs.

0.2. TOOLS FOR WRITING AND USING JAVA 9

Another change occurred to the licensing of the JDK: it is now almost Open Source Software, which
means you can have the source code and change it, you only have to make sure it still conforms to the Java
standard.

At the same time SUN released a new project called JINI, which is a “small set of instructions and
interfaces” based on Java to be used to drive and use arbitrary electronic devices in a local network– the
actual aim of the Oaks/Java project started in 1991. The idea is that every JINI device reports to a “naming
service” and tells it, what services it provides to the network. The server can then tell, what services are
available at all to somebody at some place. Therefore the device can be taken to any place in the world and
used in any JINI network to which it can connect. You do not even need a JVM in the device, you can use
a JVM supplied by a different device (e.g. a computer or browser) available in the network. The whole
system is based on Java code and the RMI protocol supplied by Java.

0.2 Tools for Writing and Using Java
Although we are describing many different programs in this chapter, the only necessary tools to work
out the programs in this book are the JDK, an editor like Emacs/XEmacs maybe with JDE and a WWW
browser like Netscape or Internet Explorer.

0.2.1 Programs:
JDK The Java Development Kit, distributed freely by SUN.

This kit is available for almost all platforms, e.g. Windows, Solaris, Macintosh, Linux, etc. This
is the first package to get, to use Java. It consists of a Java compiler, a virtual machine and a
debugger. There are of course many other compilers, JVMs and debuggers available, but this is the
program to start with. A disadvantage of the JDK especially for Windows user is, that you have to
use the command line to use it. There are no graphical interfaces coming with the package to start,
compile or debug Java programs. For Linux there is a seperate package available, which contains
the threaded versions for the JDK 1.1. This is mostly not included in the standard packages for the
Linux distributions.

MRJ/SDK Apple develops the Java developement kit for the Macintosh and distributes two versions:
the MRJ runtime environement (in version 2.0 included in MacOS 8.5 and the new version MRJ
2.1.2 from http://developer.apple.com/java/) and the SDK for Macintosh in version 2.1 as of the
time of writing also available from the address above. These are versions supporting Java 1.1.7 and
Swing/JFC. The new version MRJ 2.2 is just getting available.

GuavaC OLD WWW ADDRESS !! Guavac is a free Java compiler written in C++.

Jikes Jikes is a Java compiler developed at IBM fully conforming to the Java specifications. It is free and
much faster than most other compilers. Thy byte code produced is only slightly different. It is a nice
replacement for the javac compiler of the JDK.

Kaffe Kaffe is an open source JVM. It is a replacement for the java JVM of the JDK. In version 1.0 it is
already almost fully Java 1.1 compatible and it includes some of the Java 2 features. It runs under
Windows and Unix systems. There is also a commercial version of Kaffe sold by transvirtual.

GCJ This is the GNU compiler for Java. It can compile java source code files inot class files (bytecode)
and it can even compile class files or source files directly into executable files on the platform running
GCJ. GCJ is actually a front end to the free famous GCC/EGCS compiler suite. To compile class
files to object code you also need the libgcj runtime library.

CJ/GJ GJ is an extension to the Java language that supports generic types. This can be used to for example
to add primitive complex types to Java. This has been already done and the project is called CJ. The
idea is to translate the Java source code including the generic types like the primitive complex type
to pure Java 1.1 or Java 1.2 code and then compile it with any Java compiler available.

10 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

Jolt The JOLT - Java Open Language Toolkit - Project. Tries to compose a full freely available Java
developement kit. Should include kaffe, guavac and more.

Emacs/XEmacs This is an editor available for most platforms.
We basically use this very powerful but sometimes confusing editor to do all our programming, text
editing and more. It is also available for Windows, but it is mostly used on UNIX machines. We
are using the Emacs/XEmacs editor throughout the book, but there is no restriction to any of the
programs or examples, if you use a different editor.

mpEdit A freely available editor written completely in Java and therefore available on all platforms.
It has all necessary features to write Java/C or C++ programs.

JDE JDE (Java Development Environment) is an Emacs/Xemacs extension written in Elisp.
It enables you to write Java code in a shorter time, if you are using the emacs or xemacs editor.

Netscape Navigator/Communicator A web browser like the Internet Explorer, but written by Netscape
inc. and the source code is freely available and fully conforming to the Java standard.
We used Netscape and the appletviewer of the JDK to test all the applets in this book. Be aware that
not everything is supported by all browsers and sometimes you get different results or the browser
crashes, although the program did run with the appletviewer.

Java Workshop A commercial Integrated Development Environment (IDE) for Java by SUN. Free trial
versions for universities and educational institutions are available. Unfortunately it produces not very
readable code for later editing.

Freebuilder A freely available IDE for Java.
Already in a usable state, although it is officially in alpha stage.

Netbeans A commercial IDE for Java written in Java
This is an object oriented IDE for Java. It is free for academic and personal use, but not for commer-
cial use.

Simplicity for Java A commercial IDE for Java written in Java
A very nice and easy to use IDE for Java. It is very easy to get started with it. It can even write
event handling code for your graphical user interfaces (GUI). Free trial versions are available from
the homepage for Simplicity.

TOBA A Java to C Compiler for Linux
It converts Java source code to C and compiles the C code to get better performance. It runs on
Linux, Solaris and IRIX and supports Java 1.1. It seems to be no longer developed (August 99).

Fortran to Java A Fortran 77 to Java Compiler.
You can convert very easily Fortran 77 programs to Java. This is a part of the “Java Access to
Numerical Libraries” project at the University of Tennesee in the US. F2j was already capable of
translating the Lapack routines to Java.

0.2.2 Java Packages:
All these packages are used extensivly throughout this book and they are recommended for own Java
projects. For most of the programs presented in this book, you have to install these packages.

simulation ??? (mehr Werbung) This is the package developed during the writing of this book. It provides
some basic features, which might be of interest or can ease writing code. All the missing methods
and classes, which are essential for writing code for stochastic simulations have been included in
this package. Some source code of freely available software have been included for convenience,
adhering to the softwae licenses of course.

0.3. BASIC ELEMENTS OF JAVA 11

Ptolemy (Ptplot) A package to produce 2D plots from data.
Ptolemy – version 1.0 from January 1999 includes version 2.0 of Ptplot – is actually a whole set
of useful packages, but so far only the plot package, called Ptplot is currently fully functional. We
will use it extensively for all plotting in 2D. It has a nice zoom feature and it allows for the most
important plot styles needed.

JNL The Java Numerical Library is written by Visual Numerics and distributed freely 2. It is also submit-
ted to the standardizing committee for proof to include it in the next release of the Java language
specification to become a standard.
The JNL includes the basics for using complex numbers, it provides some important standard func-
tions (hyperbolic functions, Gamma function, etc.) and it provides the basic operations for statistical
data analysis (e.g. mean, variance, linear least square fit, etc.). It also provides some basic func-
tionality for linear algebra, like matrix decomposition, determinant, trace, solving linear systems,
etc.

JSci A freely available package, which contains many physics constants, mathematical operations, etc.
It includes methods for fast Fourier transformations, ordinary differential equations, complex num-
bers and much more. We prefer to use the JNL implementation of the complex number classes,
because they will more probably become a standard in a future release of Java.

Swing Swing is the replacement for the AWT. It is included in the Java 2 standard and therefore the JDK
1.2. For Java 1.1 you can get a seperate package, which works with the JDK 1.1.

Biss-AWT This package is meant to be a replacement for the AWT and can be considered the free alter-
native to the Swing library. We are not using it in this book.

0.3 Basic Elements of Java
To write a program we first need an editor to type the source code. Second you need a compiler to translate
the Java code to byte-code. And last, in contrast to most traditional languages like C, C++ and Fortran, we
need a virtual machine (interpreter, called JVM) to execute the byte-code.

So for every platform, where a virtual machine is available, you can execute the byte-code without any
compatibility problems. But the “look and feel” can be different: for example Java buttons in Windows
look different from buttons in X11/Motif using a UNIX operating system. But if you use the new Swing
components supplied with the Java 2 standard or extend the Java 1.1 standard with the Swing components,
you can choose the appearance of the graphical look, which then is the same across all platforms. So if
you are using the new Java 2 standard (JDK1.2), you should definitely use the new Swing components. If
you still use the AWT components (like we do here in this book), you should keep in mind that the look
(not the functionality) of the program can be different on different platforms. A big advantage of the Swing
components is that they do not use any native code, which the AWT components do.

The main reason for the wide availability of Java is that SUN Microsystems distributes the Java De-
velopment Kit (JDK) freely for a number of important platforms (Windows, Solaris/Linux, other Unix
systems). The JDK consists of a compiler (javac), a debugger (jdb) and a virtual machine (java) 3.

The JDK can be downloaded from the Internet from the JDK Javasoft link page. The latest version, as
of the time of writing, is 1.2. Throughout the book, we will use the Java 1.1 language version and the JDK
1.1.7, because the Java 2 standard is not yet implemented in any JVM of the web browsers available.

The only additional thing necessary to have a Java programming environment is a text-editor to write
the Java programs. Use your favorite editor, e.g. emacs or xemacs, which are also freely available and have
nice Java editing modes.

There is also a freely available IDE (Integrated Development Environment) called FreeBuilder. This is
a complete environment to write Java programs comfortably. Since it is the first running under the GNU

2But please consult the License Agreement coming with the software.
3Actually, there are some more components like the javadoc command to create HTML documentation or the jar tool to create

zipped packages of class files belonging together - see Chapter 0.3.1

12 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

Compiler

execution

JVM (Interpreter)
JIT

JVM+JIT

Java to C
Java to C++

Java to Fortran

Source Code

byte-code

machine code

executionexecution

execution

Source Code

platform independent

platform dependent

machine code
Compiler

Figure 1: Overview of the Java language execution model.

license, it is free, but still in alpha development stage, but it already comprises a lot of features. Of course,
there are many commercial IDEs available, like SUN’s Java Workshop or Simplicity for Java.

Opposing to other languages, which use the ASCII character set, Java uses the Unicode character set.
Unicode consists of characters represented by 2 bytes instead of 1 byte like in the ASCII set. So you can
use all the 38885 different characters available in the Unicode set (Version 2) for writing a Java program.
This means you can name your variables using for example Japanese or Greek characters. Right from the
beginning, Java is an international language.

Java is also case sensitive and doesn’t need any special characters to mark continuation lines as is
necessary in Fortran for example.

Comments are used just like in C and C++. You can use either the /* */ syntax (borrowed from C)
for multi-line comments or the // syntax (borrowed from C++) for single line comments. Additionally you
can use /** */ for comments to automatically generate a HTML documentation file for the class defined
in the file. We will see in Chapter 0.3.1 how this can be achieved.

There are also certain disadvantages, which should not be forgotten to mention: The learning curve is
certainly steeper for the beginner for Java than for Matlab or even Fortran. This is of course due to the
full use of the object oriented approach used for all Java programs. This clearly shows up when we will
introduce e.g. the file and keyboard input/output capabilities of Java. But in the long term, learning Java
definitely pays off.

A second point to note is, that for scientists a big concern are always complex numbers. They are
currently not supported as primitive types as in Fortran for example, but there are (standardized) packages,
which add complex number support to Java (e.g. JNL). And the CJ compiler, an extension to the Java
compiler, can even handle primitive complex types.

0.3.1 The “HelloWorld” Program – Applications and Applets
Application

Now let us start with the traditional “Hello World” program written in Java. Type the following code using
your favourite text editor and save the program in a file called HelloWorld_Application.java.

0.3. BASIC ELEMENTS OF JAVA 13

/ The Hel lo World Program
your f i r s t program ! /

/ This i s the Hel lo World a p p l i c a t i o n , d i s p l a y i n g
5 an i n t e r e s t i n g message , i f e x e c u t e d . /

publ i c c l a s s H e l l o W o r l d A p p l i c a t i o n / / d e f i n e a new c l a s s
publ i c s t a t i c void main (S t r i n g [] a rgs) / / t he main method

System . out . p r i n t l n ("Hello World") ; / / p r i n t message on screen

10

If we use the JDK 1.1 or 1.2 under Windows or Unix, we can execute the above example by typing on
the command line:

Compiler: javac HelloWorld_Application.java
produces HelloWorld Application.class in the same directory.

Byte-Code Executor (JVM): java HelloWorld_Application

Output on screen: Hello World !

Let us now try to understand the above code. The program consists of three lines.
In the first line the program declares with the help of theclass statement a class calledHelloWorld_Application.

The identifier following the class statement is the name by which the class will be referenced. Each Java
program is a class. The definition of the class is included in the curly brackets between line 6 and line 10.

In the second line the main method is introduced. The main method is declared void because the
method does not return a value. The main method is executed when you run the class as an application.
The only parameter, the argument of the main method, is an array of String objects, here named args.

In the third line the methodprintln() of the system class out is invoked. This method simply prints
a string and terminates with a new–line command. Alternatively you could use theSystem.out.print()
method, which does the same, but does not print a newline at the end.

You have just written and executed your first application in Java. Please, do not worry if you do not
understand everything. You are not expected to understand everything at this stage.

If you are using Emacs/Xemacs and JDE you could have started Emacs and then just used the “JDE
New” method in the “Files” menu. Then you have to type the System.out.println() code, which
could again be accomplished by using the Generate menu in the JDE menu. To compile use the “com-
pile” command in the “JDE” menu and similar the “run” command in the same menu.

Applet

Java offers another possibility to execute programs, the so-called Applets. In contrast to the stand–alone
Java application which starts with a main method and runs until it is completed, the applet is a kind
of sub–program which runs under the control of some other program. Usually, applets are (small) Java
programs, which are started by a server program, e.g. a WWW browser like Netscape Navigator 4, the
Internet Explorer5, HotJava or the appletviewer6.

In the case of an applet, you have a browser loading a HTML (Hyper Text Mark-up Language) file.
This HTML file contains mark-ups, which tell the browser what applet to load and where to find the applet
(see figure 2). You should note that HTML is not a programming language, but it is a mark-up language to
produce a text with additional “commands” for the meaning of the text parts. It does not give any details
about the formatting or layout of the text. To start an applet, HTML uses some special marks, which we
will discuss in a moment.

The big difference between an applet and an application is that applets are not allowed to do certain
things. For example applets do not have access to local file systems, so it is not possible to save data on

4You need at least version 4.06 or patches for earlier versions to use all features of Java 1.1
5Seems to run Java 1.1 programs since version 4, but does not conform to the Java standards.
6included with the JDK.

14 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

Browser

HTML File

Applet

<APPLET code="test.class"> Test </APPLET>

test.class

Figure 2: An HTML file gets loaded into the browser. The browser itself formats the text and if it finds an applet mark,
it starts the applet.

the file system from an applet. It is also not possible for an applet to issue a print command, the process
of printing has to be initiated by the server (browser). And an applet is not allowed to do time consuming
tasks like long computations. This has to be kept in mind, when writing applets.

The “Hello World” example written as an applet takes the following form:

/ App le t v e r s i o n of Hel lo World /

import j ava . a p p l e t . ;
import j ava . awt . ;

5
publ i c c l a s s Hel loWor ld App le t extends Apple t

publ i c void p a i n t (Graph ics g)
g . d r a w S t r i n g ("Hello World" , 2 5 , 5 0) ; / / w r i t e t e x t in window

10

Applets have to be derived from the applet class java.applet.Applet, which include the principal
facilities of the Abstract Windowing Toolkit (AWT) and the interface with X/Motif on Unix, Windows on
PC, and Mac-OS on Macintosh platforms. As you can see there is no main method in an applet. Instead if
an applet is started by a server, the init() method is executed first. There is also a start() and a stop() method,
which are executed if the applet becomes visible or disappears in the server window (e.g. by scrolling in
the Netscape Navigator window).

Many methods are available to set up the display in an assigned applet area. The paint() method
appearing in the “Hello World” applet is responsible for the visual part of the applet. It uses a canvas
(drawing area) with a size defined by the calling HTML file. In our case this HTML file could look like:

HTML
HEAD TITLE Test / TITLE /HEAD
BODY

Here we could e x p l a i n the a p p l e t to the use r .
5 P

APPLET code ="HelloWorld_Applet.class"
width =500 h e i g h t =300

This message i s d i s p l a y e d , i f
your Browser i s not c a p a b l e of runn ing a p p l e t s !

0.3. BASIC ELEMENTS OF JAVA 15

10 /APPLET
/BODY
/HTML

The code parameter given in the HTML file defines the name of the applet to be executed. Because
there is no init() and no start() method in our example, the paint() method is called by the browser or
appletviewer. The size of the canvas has to be given explicitly in pixels in the HTML file.

To run the applet you can either type

appletviewer call_HelloWorld_Applet.html or

use the following URL in the browser:
PATH_TO_CLASS_AND_HTML_FILE/call_HelloWorld_Applet.html
e.g. /home/user/java/call_HelloWorld_Applet.html

The question, when to use an application and when to use an applet, is difficult to answer. We have
decided to write most of the programs as applications and applets in one program. So you can decide if
you run it as an application or start it as an applet. Some features are of course not available from an applet
and you are missing some functionality of some programs, if you run them as an applet. Time consuming
calculations should definitely be written as an application, small programs can be written as an applet.
Although this is not mandatory it should be obeyed by a good Java programmer.

In Java 1.1 a new package has been introduced, which allows for so-called “trusted applets”. These are
specially signed libraries, which are signed with a key by a person we trust (using the JDK we have to use
javakey for that purpose). Only if the signature is valid and we trust that person, the “trusted applet” has
access to the local files system – basically it can do everything an application could do on our machine (see
[?, page 142]). This is already implemented with the appletviewer, on other “servers” it might work or not.
In the future this will be extended to a more extensive set of rules for the allowed methods of an applet.

Documenting Java Programs – javadoc A last remark concerns the documentation for the programs.
We have learned, that we can include documentation comments using /** */. These comments
are processed by using the javadoc command from the JDK. If you run the javadoc command as:

javadoc HelloWorld_Application.java HelloWorld_Applet.java

you get some HTML files: packages.html, tree.html, AllNames.html, HelloWorld Applet.html, HelloWorld Application.html.
All these files describe the written classes. The tree.html file gives a tree showing the relatives of the
class. The package.html gives the package structure (not used here). The most important file is the All-
Names.html, which is an index of all written programs in this package (for an introduction to packages see
later).

You can even include special predefined strings to supply the author and many more informations to
the javadoc command, either for a class or a method, whereas the documentations for the method can also
be supplied for a class:

/
@author Pe ter B i e c h e l e
@version 1 . 0

/
5 . . c l a s s . . .

/
@see a c l a s s name
@see c l a s s name # method name

10
@param a b c
@return d
@except ion none

/
15 . . method . . .

16 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

This of course gives us the opportunity to write our explanations/documentationbetween the /** */
commands using HTML constructs like <hr> for a horizontal rule or others - try it. Because this code gets
directly included in the HTML files produced by the javadoc command, you can have nicely formatted
documentation. But you should avoid using <h1> to <h6> – the heading commands – because javadoc
uses them for its own structure.

If you load AllNames.html into a browser, you get the HTML file shown in figure 3. Now you can

All Packages Class Hierarchy

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index of all Fields and Methods
H
HelloWorld_Applet(). Constructor for class HelloWorld_Applet
HelloWorld_Application(). Constructor for class HelloWorld_Application

M
main(String[]). Static method in class HelloWorld_Application

P
paint(Graphics). Method in class HelloWorld_Applet

Figure 3: The output of the javadoc command from the JDK 1.1.

click on the link HelloWorld Applet and you get the documentation for that class and analogous for the
HelloWorld Application class (see figure 4). The missing graphics on the right of figure 4 are available in

Class HelloWorld_Applet
java.lang.Object
 |
 +----java.awt.Component
 |
 +----java.awt.Container
 |
 +----java.awt.Panel
 |
 +----java.applet.Applet
 |
 +----HelloWorld_Applet

public class HelloWorld_Applet
extends Applet

 HelloWorld_Applet()

 paint(Graphics)

 HelloWorld_Applet

 public HelloWorld_Applet()

 paint

 public void paint(Graphics g)

Overrides:
paint in class Container

Class HelloWorld_Application
java.lang.Object
 |
 +----HelloWorld_Application

public class HelloWorld_Application
extends Object

This is the Hello World application, displaying an interesting message, if executed.

 HelloWorld_Application()

 main(String[])

 HelloWorld_Application

 public HelloWorld_Application()

 main

 public static void main(String args[])

Figure 4: The output of the javadoc command from the JDK 1.1.

the Java documentation of the JDK and just has to be copied into a subdirectory of the HTML directory
called images . Then it looks like the figure on the left.

The javadoc command of the JDK 1.2 produces much nicer pages which look like in figure 5. There
are no separate gif pictures needed anymore and the structure of the classes is represented much better.

0.3. BASIC ELEMENTS OF JAVA 17

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class HelloWorld_Applet
java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--java.awt.Panel
 |
 +--java.applet.Applet
 |
 +--HelloWorld_Applet

public class HelloWorld_Applet
extends java.applet.Applet

See Also:
Serialized Form

Fields inherited from class java.awt.Component
BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT,
TOP_ALIGNMENT

Constructor Summary
HelloWorld_Applet()

Method Summary
 void paint(java.awt.Graphics g)

Methods inherited from class java.applet.Applet
destroy, getAppletContext, getAppletInfo, getAudioClip, getAudioClip,
getCodeBase, getDocumentBase, getImage, getImage, getLocale, getParameter,
getParameterInfo, init, isActive, newAudioClip, play, play, resize, resize,
setStub, showStatus, start, stop

Methods inherited from class java.awt.Panel
addNotify

Methods inherited from class java.awt.Container
add, add, add, add, add, addContainerListener, addImpl, countComponents,
deliverEvent, doLayout, findComponentAt, findComponentAt, getAlignmentX,
getAlignmentY, getComponent, getComponentAt, getComponentAt, getComponentCount,
getComponents, getInsets, getLayout, getMaximumSize, getMinimumSize,
getPreferredSize, insets, invalidate, isAncestorOf, layout, list, list, locate,
minimumSize, paintComponents, paramString, preferredSize, print,
printComponents, processContainerEvent, processEvent, remove, remove,
removeAll, removeContainerListener, removeNotify, setFont, setLayout, update,
validate, validateTree

Methods inherited from class java.awt.Component
action, add, addComponentListener, addFocusListener, addInputMethodListener,
addKeyListener, addMouseListener, addMouseMotionListener,
addPropertyChangeListener, addPropertyChangeListener, bounds, checkImage,
checkImage, coalesceEvents, contains, contains, createImage, createImage,
disable, disableEvents, dispatchEvent, enable, enable, enableEvents,
enableInputMethods, firePropertyChange, getBackground, getBounds, getBounds,
getColorModel, getComponentOrientation, getCursor, getDropTarget, getFont,
getFontMetrics, getForeground, getGraphics, getHeight, getInputContext,
getInputMethodRequests, getLocation, getLocation, getLocationOnScreen, getName,
getParent, getPeer, getSize, getSize, getToolkit, getTreeLock, getWidth, getX,
getY, gotFocus, handleEvent, hasFocus, hide, imageUpdate, inside,
isDisplayable, isDoubleBuffered, isEnabled, isFocusTraversable, isLightweight,
isOpaque, isShowing, isValid, isVisible, keyDown, keyUp, list, list, list,
location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove,
mouseUp, move, nextFocus, paintAll, postEvent, prepareImage, prepareImage,
printAll, processComponentEvent, processFocusEvent, processInputMethodEvent,
processKeyEvent, processMouseEvent, processMouseMotionEvent, remove,
removeComponentListener, removeFocusListener, removeInputMethodListener,
removeKeyListener, removeMouseListener, removeMouseMotionListener,
removePropertyChangeListener, removePropertyChangeListener, repaint, repaint,
repaint, repaint, requestFocus, reshape, setBackground, setBounds, setBounds,
setComponentOrientation, setCursor, setDropTarget, setEnabled, setForeground,
setLocale, setLocation, setLocation, setName, setSize, setSize, setVisible,
show, show, size, toString, transferFocus

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Constructor Detail

HelloWorld_Applet

public HelloWorld_Applet()

Method Detail

paint

public void paint(java.awt.Graphics g)

Overrides:
paint in class java.awt.Container

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class HelloWorld_Application
java.lang.Object
 |
 +--HelloWorld_Application

public class HelloWorld_Application
extends java.lang.Object

This is the Hello World application, displaying an interesting message, if executed.

Constructor Summary
HelloWorld_Application()

Method Summary
static void main(java.lang.String[] args)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

HelloWorld_Application

public HelloWorld_Application()

Method Detail

main

public static void main(java.lang.String[] args)

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Figure 5: The output of the javadoc command from the JDK 1.2.

18 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

0.3.2 Variables
Essentially, Java distinguishes between two types of variables, primitive data types and reference data
types.

Primitive data types

We already mentioned that in Java each variable or expression has a definite type and that each type has
identical size and behaviour on all Java implementations. Java has built in primitive data types to sup-
port integer, floating–point, boolean, and character values. The primitive data types of Java for integers,
floating–points, characters and boolean variables are listed in Table 0.3.2.

Table 2 Primitive data types in Java. The byte and char data types have been introduced in Java 1.1 and in
Java 2 there was a void type added.

Type Contains Default Size Min
Max

byte signed integer 0 8bits -128
127

short signed integer 0 16 bit -32768
32767

int signed integer 0 32 bits -2147483648
2147483647

long signed integer 0 64 bits -9223372036854775808
9223372036854775807

float floating–point 0.0 32 bits 1.40239846E-45
3.40282347E+38

double floating–point 0.0 64 bits 4.94065645841246544E-324
1.79769313486231570E+308

boolean true or false false 1 bit

char Unicode character u0000 16 bits u0000
uFFFF

The following comments have to be made. In a Java program every variable must have a type that
precedes its name when the variable is declared. For example the integer i may be declared as

int i;

and integer or long values can be expressed as

int i = 123;
long l = 1234567889L; long l2 = 123456789l;

Characters are represented by two different data types in Java. One can store only one character and is
called char. The other one stores many characters like a word or even a sentence. This second datatype is
not a primitive datatype but an object and is called string. It will be discussed later on.

Char values are defined in Java between single quotes, e.g.

char c = ’C’;

Usually characters on a computer are represented internally by a number. This number is between 0 and
255 and the coding of the characters to the numbers is called ASCII 7 code. Because not all characters used
for all the different languages in the world are representable by 256 different codes, the codespace has been

7American Standard Code for Information Interchange

0.3. BASIC ELEMENTS OF JAVA 19

extended to 65535 numbers and is now called Unicode character set. With this set of numbers correspond-
ing to characters you can code every language of the european countries. There are other Unicode sets to
represent more complicated languages like Japanese or Chinese.

A Unicode character in Java is represented by the Unicode escape sequence uxxxx, where xxxx is a
sequence of four hexadecimal digits.

Float and double types have special values that may be the result of certain floating-point operations.
For example in the java.lang.Float and java.lang.Double classes the special valuesPOSITIVE_INFINITY,
NEGATIVE_INFINITY, and NaN (not-a-number) are defined.

Floating point numbers are expressed as e.g.

13. 1.3e1 .13E2

and are considered to be constants of type double unless they are specified with f or F, which makes
them then float constants.

In Java strings are not of primitive type and they are not an array of chars like in C. Java provides a
String class to deal with sequences of character data. The java string class provides methods to operate on
String objects.

All variables in Java are initialized automatically, as soon as they are declared. All primitive types get
initialized to zero, the boolean type to false and all objects (remember they are references) are initialized to
null. So there is no ambiguity like in other languages, if a variable has a defined value at certain points
of the program. Although Java forces you to include sometimes a statement to initialize variables, just to
make easier to read source code. We will see an example for this later on, when we discuss loops and
calculate averages of sequences of numbers.

Reference data types

All non-primitive data types in Java are objects. They are called also “reference types” because they are
handled by reference. For example you may pass the address of an object, which is stored in a variable, to
a method. In contrast, primitive types are always passed by value.

Strings and Arrays

There are two special data types belonging to the reference data types: the arrays and the strings. Arrays
are objects, which have some special properties and are handled a little bit different from ordinary objects,
just because they are used very often (see section 0.6).

Strings are another special data type belonging to the reference data type. In contrast to C and C++
they are not arrays of char variables, but seperate objects, which can only be accessed as the whole string
or by using special string functions. The strings are also not terminated by a \0 like in C/C++, they just
contain the text string assigned to the string object. In the section about arrays, we will learn how to handle
Strings and in the section about objects, we will finally hear the full story. Actually we hav met strings in
out first program already, because the text between two " is a string.

0.3.3 Casting and Type Conversions (Wrapper Classes)
Java uses a clear strategy to convert the primitive data types to other primitive ones. In a calculation Java
always converts (casts) the less precise type to a more precise one. So if you multiply an integer and a float
value, it converts automatically the integer to a float and then multiplies both values. If you want to convert
a value explicitly you can use the cast operators (like in C and C++). Just write the primitive type in round
brackets in front of the value to be converted, e.g. result=(double)a*b casts a to a double value
and then multiplies it with b, assigning the result to result. You can also use the wrapper classes to be
discussed below, but it is much more complex and should be avoided.

A common problem is to convert from strings to primitive types and vice versa. Because strings are
objects and not primitive types, we need a method for the conversion. For that reason Java has so called
wrapper classes, subclasses of the java.lang.Number class for all primitive data types. These classes
provide all the necessary methods for all types of conversion.

20 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

The static .valueOf(String s) method always converts a string to the corresponding wrapper
class of a primitive type, e.g.

double a ;
S t r i n g t e x t ="+1.234";

Double D = Double . va lueOf (t e x t) ;
5 a = D. doub leVa lue () ;

a=Double . va lueOf (t e x t) . doub leVa lue () ;

The fourth line converts the string to the Double class and in the fifth line the doubleValue()
method converts the Double wrapper class to a double primitive type. The last line shows how to do it
in one line. For the other types you just have to substitute float or int for double, i.e., floatValue(),
intValue() and the corresponding wrapper class (Integer for Double, etc.).

Another (easier) method, later used in theParamApplet.java program is, e.g., theInteger.parseInt(String s)
method, which gives back a primitive type integer instead of the wrapper class likevalueOf(String s).
For other conversions you can use theLong.parseLong(String s) or theLong.parseByte(String s)
method.

These methods simplify the conversion a little bit. For the example, see ParamApplet.java in line
11. But this method is only available to Integer, Long and Byte wrapper classes, NOT for Float and Double
as of Java 1.1. Fortunately they are included in the Java 2 specification. In the Java 1.1 case you have to use
the valueOf(String s) and doubleValue(String s), floatValue(String s) methods.

To convert a double value to a string you have to use the toString(double d) method, which is
available for all primitive data types. For example, two ways of doing it are:

double d = 3 . 1 2 3 4 ;
S t r i n g s1 = Double . t o S t r i n g (d) ; most easy way
S t r i n g s2 = (new Double (d)) . t o S t r i n g () ;

Convenience Classes of the simulation Package for Conversions The simulation package provides
in the util class methods to convert all primitive types to Strings and Strings to primitive types. Therefore
we can for example use

double dum = simulation.Util.stringToDouble("23.4567");
String text = simulation.Util.doubleToString(7.4562);

to convert a String to a double or a double to a String. There are analogous methods to convert int, long
and float variables.

0.4 Packages and Import Statements
0.4.1 Packages
Because Java was designed to be able to load code distributed over the whole internet dynamically, you
have to avoid name conflicts between the programs/classes. The Java solution for an Internet–wide unique
naming scheme is to put every class in a package. A package is a group of related and possibly cooperating
classes. The naming scheme should be based on the internet domain name of the organization at which the
package is developed.

If we are not using the package command at all, Java uses the empty package. Then we have to put our
programs into the current directory. This is not recommended for medium to complex programs, but for
test purposes and very small programs this is very convenient.

The name of the package is given at the beginning of a file before the actual program/class definition
starts. So for example if we put the statement

package de.freiburg.simulation;

0.4. PACKAGES AND IMPORT STATEMENTS 21

at the beginning of the “Hello World” application, we can compile the application with javac Hel-
loWorld_Application.java like before. But to run the application we have to use

java de.freiburg.simulation.HelloWorld_Application .

The program does not start? It cannot, because there is one more thing to know. Java is looking for pro-
grams/classes in the directory structure given by the package and the class name. So for the example above
we have to put the HelloWorld_Application.classfile in the directoryde/freiburg/simulation/
and issue the java command in the directory, where the directory tree starts.

For example on a Unix machine execute:

mkdir de
mkdir de/freiburg
mkdir de/freiburg/simulation
cp HelloWorld_Application.class de/freiburg/simulation/
java de.freiburg.simulation.HelloWorld_Application

On a Windows machine we have to change the mkdir command into the md command and cp into copy.
We can also use an environment variable called CLASSPATH to tell the java executor (JVM) where to

find the class files. If for example the CLASSPATH-variable includes the directory /home/user/java
you can start the above example in this directory, if the class is in the subdirectoryde/freiburg/simulation/.
It has to be noted that the entries in a CLASSPATH specification may also be ZIP files that contain these
classes. On Unix systems the directories in a CLASSPATH specification are separated by “ :” (on Windows
systems by “;”).

For example on a Unix system:

export CLASSPATH="$CLASSPATH:/home/user/java"
cd /home/user
java HelloWorld_Application
java de.freiburg.simulation.HelloWorld_Application

Only one of the last two lines have to be used, depending on the location of the class file. On Windows you
have to change the first two lines to

set CLASSPATH="%CLASSPATH;c:\java"
cd c:\

All the standard API classes of Java are stored in a central jar file, which is additionally packed to save
disk space. These classes are always searched, no matter the CLASSPATH-variable is set to. This might be
different on some systems and the Java API class file path has to be included in the CLASSPATH-variable.

0.4.2 The jar Tool
If you have written a lot of small classes, which all work together (called a project), you can put them all
inside a “jar” file and give the jar file to friends instead of the whole bunch of small class files. A jar file
is just an archive created by the jar program coming with the JDK. It works like the well-known UNIX
tar command. This is actually a very nice method for packaging applets on the internet, because the jar
command also compresses its contents.

For example to view the contents of a jar file you can issue the command jar tvf lava.jar. The
file lava.jar is a file on the CD ROM of the Lava Rocks package. You can use any other .jar file you
have or can find anywhere. Some of the available options used with jar are given in table 3. Jar files are
portable from one platform to the other, but as you can see jar is not as powerful as the tar command in
UNIX.

0.4.3 Basic Java Organization
Java is basically defined in two ways: the first one is the basic set of instructions, like all variables, all
arithmetics and conditional statements and loops (see in the next few sections). This is the fundamental
part of the language.

22 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

Table 3 Options of the jar command. The jar tool is included in the JDK.
Option Description

c create jar file
t table of contents of jar file
x extract files from jar archive
f name of jar file comes as first argument after options (the default is the

standard input/output)
v verbose output
O do not compress (used for jars residing in the CLASSPATH)

The second one are the Application Programmers Interfaces (API). They are just packages, which
consist of many functions and variables to provide a certain functionality. For example the applet API
(package) provides all the necessary functions to build and handle applets in Java.

The big difference to other languages like C for example, where also certain (small) APIs exist, is that
these APIs are all included in the Java standard, including the ones giving access to graphical capabilities.
There is no place for different vendors to supply different libraries (packages) for the same functionality,
but using different calling schemes and therefore making programs non portable.

0.4.4 Import statement
Before learning more about the syntax of Java, we have to explain another statement appearing in the part
of any Java program before the actual definition of the class: the import-statement. With import you
can make classes available, so you don’t have to use the fully qualified name to the class, which would be
very long sometimes.

If you would like to use the HelloWorld class from above in your programs, you have to change the
main() method to let us say hello().

Listing of HelloWorld.java

package de . f r e i b u r g . s i m u l a t i o n ;

publ i c c l a s s Hel loWorld
publ i c s t a t i c void h e l l o ()

5 System . out . p r i n t l n ("Hello World") ;

Now you could either type de.freiburg.simulation.HelloWorld.hello() (the fully quali-
fied name) in your program or you can use

import de.freiburg.simulation.*;
....

HelloWorld.hello();

to import all classes in the de.freiburg.simulation class. You can also use:

import de.freiburg.simulation.HelloWorld;
....

HelloWorld.hello();

if you just want to import one special class. But you can not use import de.freiburg.*; and then
call the method by using simulation.HelloWorld.hello();. You can not split the package name
in the import statement.

We have already made use of the import-statement in the “Hello World” applet. There we have
imported the java.applet-class, which defines applets and their behaviour, and the java.awt-class,
which will be explained later.

0.5. SIMPLE ARITHMETICS, CONDITIONAL STATEMENTS AND LOOPS 23

There is one class, which is always imported without any import statement: the java.lang.*
classes. This is the fundamental class of Java and it is implicitly imported for all Java programs, so you do
not have to specify it. For example the System class is in java.lang, that is why we did not have to use
an import statement in the “Hello World” application.

0.4.5 Compiling Projects

If you write a program consisting of many classes and files, you may think that this is a lot of work to
compile all of them. Or if you are used to writing code in other languages, you might think of using tools
for checking if a program has to be recompiled, if you make changes to some files. One of these tools might
be the famous “make” utility. But fortunately this is not needed for Java, because the JDK developers (or
to be precise the Java standard) already takes care of these problems.

You have to arrange your code in the different classes according to certain rules (packages). So the
directory structure is already a nice tree structure of your project.

If you then want to compile the whole project, but only the files which have changed 8 should be recom-
piled, you issue the command

javac -depend -d base_directory main.java

then the Java compiler takes care of all “dependencies”.

0.5 Simple Arithmetics, Conditional Statements and Loops

0.5.1 Simple arithmetics

As we already mentioned Java supports almost all of the standard C operators. The arithmetic operators
that operate on numerical types are

addition
subtraction
multiplication
division

% remainder

The operator can also be used to concatenate strings, as we will see later in an example in section 0.7.
It is important to remark, that in Java integer division truncates toward zero (7/2=3, -7/2=-3 and -7/-

2=3).
Java has two special operators for increment and decrement . The expression i++ is equivalent

to i=i+1 except that i is evaluated only once. They can be used as pre- and post-operators, depending
on the position of the symbols, e.g. i++ or ++i. This does not make a difference, if you just have these
statements alone, but in some complex expressions this might make a difference. The postfix (prefix)
version of the operator ++ evaluates the value of the operand before (after) the increment operation. For
example i = j++ means setting i to j and then increment j by one. But i = ++j means setting i to j+1.

There is no power operator like ** in FORTRAN or ˆ like in many different programs like TeX/LaTeX.
In Java like in C/C++ you have to use (like in C) the Math.pow() method of the Math class. The ˆ
operator, used sometimes for the power, is the exclusive or (XOR) operation in Java (either in the logical
or the boolean sense). We should not confuse this.

Java supports also a standard set of relational and logical operators, which all yield boolean values.
They are listed below

8Notice that there is no dependence of classes on other classes in the sense of re-compilation. Java does dynamical run-time
linking and no static linking at the end of the compilation process as in all other languages.

24 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

greater than
greater than or equal to
less then
less than or equal to
equal to

! not equal to

The conditional operators

& & conditional AND
conditional OR

operate on boolean expressions only.
Java has also bitwise operators which operate on integers and on boolean types. They allow to perform

bit manipulation on data.

& and
or

˜ not
shifts bits left filling with zero bits on the right
shifts bits right filling with the highest sign bit on the left–hand side (like a division
by 2)
shifts bits right filling with zero bits on the left–hand side, treating the argument as a
bitfield

Some examples are in place

1 & 0 // is zero
1 | 0 // is one
˜10 // is -11, do it by hand to check
2 << 1 // is 4, because bitwise is 2=0010 and 4=0100
2 >> 1 // is 1, because bitwise is 2=0010 and 1=0001
2 >>> 1 // is also 1, like above
2 >> 3 // is 0, because bitwise is 2=0010 and 1=0000

You can use these operators for doing fast divisions by powers by 2, because it is much faster to do a bitshift
than a division. For example, instead of writing 16/2 use 16 >> 1 or instead of using 8/4 we can write
8 >> 2.

Last not least we have to mention the fundamental assignment operator . It may be used in combina-
tion with other operators, e.g., means is incremented by.

0.5.2 Loops
for Loops For our forthcoming applications the most important control statement is the for statement.
It is used to loop over a range of values from the beginning to the end. Its syntax is

for (init_expressions; boolean_expr; incr_expressions) {
statements

}

where init_expressions denotes the initial value of the iterated variable, incr_expressions
denotes the increment of the iterated variable. For both you can specify more than one expression separated
by commas (as in C). This is the only place, where you can use these comma separated lists. The variables
used in the for statement can be integer (long) or float (double) values.

At the beginning of the for loop the boolean expression boolean_expr is evaluated. If its value is
found to be true the statement is executed repeatedly with increment incr_expr until the value of the
boolean expression is found to be false.

As an example demonstrating the use of for loops we want to write a program to calculate the mean
of a given number of random numbers. One possible implementation could look like this:

0.5. SIMPLE ARITHMETICS, CONDITIONAL STATEMENTS AND LOOPS 25

/ compute the mean of N random numbers d i s t r i b u t e d u n i f o r m l y /

publ i c c l a s s DataMean
publ i c s t a t i c void main (S t r i n g [] a rgs)

5 in t i , N;
double mean ;
N=10000 ; / / s e t the number of random numbers

mean =0;
10 for (i = 1 ; i N; i + +) / / C a l c u l a t e the mean of the numbers

mean+=Math . random () ; / / draw a random number of t ype double
/ / nex tDoub le () r e t u r n s the nex t random number

mean /= N;

15 System . out . p r i n t l n (" The mean of "+N+" random numbers \n"+
" between 0 and 1 is "+mean+" !") ;

Here we used the class java.util.Random which allows for the creation of random numbers. If
we don’t supply a seed, as is the case here, it just uses the time to initialize the generator. The initialization
takes place in line 10, where a new generator is created. You can check this by running the application
more than once and comparing the means – they should not be the same.

Thenext.Double()method returns a new random number of type double (for a float userand.nextFloat()).
You can also create normally distributed random numbers with the nextGaussian() method of the
Random class. The remaining parts of the program should be self explaining. You can of course use
any expression (e.g. d=d*u+2) in the last part of the for statement, not only the ++ operator, which is
obviously used most often.

Byte-Code of a class le Using the DataMean() program, we want to show the byte-code produced
by the Java compiler. In the first line you can see the command to use (javap) and below the output:
Command_Line>>> javap -c DataMean

Compiled from DataMean.java
public synchronized class DataMean extends java.lang.Object

/* ACC_SUPER bit set */
{

public static void main(java.lang.String[]);
public DataMean();

}

Method void main(java.lang.String[])
0 sipush 10000
3 istore_3
4 new #10 <Class java.util.Random>
7 dup
8 invokespecial #12 <Method java.util.Random()>

11 astore_1
12 dconst_0
13 dstore 4
15 iconst_1
16 istore_2
17 goto 32
20 dload 4
22 aload_1
23 invokevirtual #17 <Method double nextDouble()>
26 dadd
27 dstore 4
29 iinc 2 1
32 iload_2
33 iload_3
34 if_icmplt 20
37 dload 4
39 iload_3
40 i2d
41 ddiv

26 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

42 dstore 4
44 getstatic #18 <Field java.io.PrintStream out>
47 new #8 <Class java.lang.StringBuffer>
50 dup
51 ldc #2 <String " The mean of ">
53 invokespecial #13 <Method java.lang.StringBuffer(java.lang.String)>
56 iload_3
57 invokevirtual #15 <Method java.lang.StringBuffer append(int)>
60 ldc #4 <String " random numbers

">
62 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
65 ldc #3 <String " between 0 and 1 is ">
67 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
70 dload 4
72 invokevirtual #14 <Method java.lang.StringBuffer append(double)>
75 ldc #1 <String " !">
77 invokevirtual #16 <Method java.lang.StringBuffer append(java.lang.String)>
80 invokevirtual #20 <Method java.lang.String toString()>
83 invokevirtual #19 <Method void println(java.lang.String)>
86 return

Method DataMean()
0 aload_0
1 invokespecial #11 <Method java.lang.Object()>
4 return

while and do–while Java offers also the possibility to use other loop constructs, the while and the
do-while loop. There syntax is
while (boolean_expression)
statement

and
do

statement
while (boolean_expression)

It is important to observe that in the first construct the boolean expression is evaluated before the statement
is executed, while in the second construct the boolean expression is evaluated after the statement has been
performed!

In order to give an example we write down an equivalent code using the while statement of the for
loop of the DataMean.java program. Lines 13 to 15 have to be replaced by
int i;
while(i<N){

mean += rand.nextDouble();
i++;

}

0.5.3 Conditional Statements
if-else The if statement is the fundamental form of conditional control of flow. It allows to choose,
whether the statements that follow it are executed or not. Its syntax in Java is
if (boolean_expression) {

statement1
}
else if (boolean_expression) {

statement2
}
else {

statement3
}

First, the boolean expression is executed. If the value is true then statement1 is performed, otherwise
if there is the optional else statement statement2 is executed. Of course, if-else constructions can
be nested, i.e., an if-else conditional control flow, can be placed within another if-else statement.

0.5. SIMPLE ARITHMETICS, CONDITIONAL STATEMENTS AND LOOPS 27

The conditional operator ? The conditional operator ? provides a single expression yielding one of two
alternatives depending on a boolean expression. To demonstrate its use we write down an if/else Java
code first and translate it into an equivalent ? construction. The if/else code reads

if (a<b)
x=1.0;

else
x=2.0;

The equivalent construction with the conditional operator ? is more compact

x= (a<b ? 1.0 : 2.0);

The meaning of the different expressions in the above statement should be obvious.

(labelled) break and continue – goto We already remarked that Java does not have a goto instruction
to transfer control to an arbitrary statement in a method. To handle with situations where other languages
have a goto Java provides the labelled break and continue statements. Labels are typically used in
blocks and loops and precede statements

label: statement

The break statement is used to exit from a block, e.g. to break out of a loop. E.g., an unlabeled break
terminates the innermost for, while or do.

The continue statement is used only within loops. It skips to the end of the loops body and evaluates
the boolean expression that controls the loop. The return statement terminates execution of a method
and returns to the invoker. If a method returns no value you can use (you can also just omit it)

return;

if the method has a return type, the return must include an expression for a returned type. You can use
as many return statements as you like, but only one is executed each time the method gets called.

recursive programming As in most other languages, recursive programming is allowed, although it
should be avoided. First because of the clarity of the code and second it has low performance and larger
memory consumption. Therefore we do not see any reason to show an example, just avoid using recursive
algorithms.

switch/case Another central flow structure is the switch statement. It evaluates an integer expression
whose value is used to find an appropriate case label among those listed inside the following block. The
switch statement may be used to replace nested if-else statements that determine what is the output
for each number. The switch statement works only if the value being tested is a primitive integral type
and when the value is tested against constant values. the basic syntax of the switch statement is

switch(expression) {
statements

}

After evaluating the expression, the switch statement executes certain code within the block depending on
the integral value of the expression. This information is indicated by the integer label following the case:
statement. If there is no case: label that matches the value of the expression, the swich command
executes the code following default:, if there is one. Otherwise, switch does nothing.

An example of the use of the switch statement is found in the simple program DiceGame.java

/ A p p l i c a t i o n to show the s w i t c h case s t a t e m e n t /
publ i c c l a s s DiceGame

publ i c s t a t i c void main (S t r i n g [] a rgs)
in t f ace ;

5 for (in t i = 1 ; i 7; i ++)

28 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

face = 1 + (in t) (Math . random () 6) ;
switch (f ace %6)
case 0 : / / p r i n t 6 i f t he remainder i s zero

System . out . p r i n t l n ("Face equals 6") ;
10 break ;

d e f a u l t :
System . out . p r i n t l n ("Face equals 1,2,3,4 or 5") ;
break ;

15

Again we want to stress that only an integer, long, char or byte type is possible in the switch statement
(no double or float). And the case expressions have to be integral values and not any boolean expressions
like i>2.

0.6 Arrays, Matrices and Strings
Before discussing the notion of classes and objects, we want to introduce another reference type: the array.
Arrays are actually objects (see Chapter 1), but Java provides many special commands for arrays, which
makes them a little bit special.

The first question is how to create arrays and how to destroy them. The destruction is easy to explain:
it is done automatically by the garbage collector (like for all objects). This is different to other languages
like C, C++ and Fortran 90, where you explicitly have to destroy (free) the allocated memory. To create

Table 4 A comparison of the different memory allocation commands in different languages.
F77 F90 C C++ Java

– allocate malloc new new
– deallocate free dispose –
– Pointer Pointer References + Garbage Collector
– – Pointer arithmetic possible there is no reference arithmetic

an array you have to use the new keyword used for creating (instantiating) objects. So to create a one
dimensional array, called intarray, with 10 elements you use:

int intarray[] = new int[10];

This also sets all the elements to zero. But this is only true for primitive types. Arrays of reference types
(objects) are created the same way, but the elements consist of references to the elements. The elements
themselves are NOT initialized and have to be created too. An example for this is a two dimensional array
as we will see soon.

Indices of arrays in Java start with zero as in C and not with 1 as in Fortran. No negative indices are
allowed in Java. This is the reason for numbering the chapters in this book starting from 0. The length of
an array (meaning the number of elements) is always given by the .length field. For the array above you
get the number of elements by using intarray.length. We have already met this notation when we
discussed the command line parameters.

You can also create the array and initialize it right away by using (also in Java 1.0):

int intarray[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int[] intarray = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

or one step further, create an array of objects (here strings) and create the elements in the same step:

String stringarray[] = {"a","b","c","d","e","f","g"};

0.6. ARRAYS, MATRICES AND STRINGS 29

In Java you can even put the brackets behind the type instead of the variable name (not possible in C). So
it does not matter if you write int intarray[]; or int[] intarray;.

In Java 1.1 you can also use anonymous arrays:

String[] texts;
texts = new String[] {"a","b","c","d","e","f","g"};
System.out.println(new char[] {’h’,’e’,’l’,’l’,’o’});

So you can create and initialize arrays without even using a variable.
Multidimensional arrays are also supported. Just like in C they are arrays of arrays. For example

double matrix[][] = new double[10][10];

creates a 10 by 10 matrix, called matrix, meaning that you have created 10 arrays of type double[10].
An important point to make is that you do not have to specify all dimensions at once. You can for example
create a triangular matrix by submitting:

double matrix[][] = new double[10][];
for (int i=0; i<10; i++) {

matrix[i] = new double[i+1];
}

To access multidimensional arrays you can also use one dimensional array syntax (as in C). If you have a
two dimensional array you can access the element [i,j] by accessing the element [i+j*columns].

Now let’s look at an example using arrays. We have rewritten the program DataMean above to calcu-
late the average of random numbers by using arrays.

Listing of DataMeanArray.java

publ i c c l a s s DataMeanArray
publ i c s t a t i c void main (S t r i n g [] a rgs)

in t i , N;
double mean , sum ;

5 double RandomNumber [] ; / / d e c l a r e an array of 1 d imens ion

N=10000 ; / / s e t the number of random numbers
RandomNumber = new double [N] ; / / I n s t a n t i a t e the whole array

10 / / Generate a l o t o f random numbers and s t o r e them in an array
for (i = 0 ; i N; i ++)

RandomNumber [i]= Math . random () ;
/ / nex tDoub le () r e t u r n s the nex t random number

15 / / C a l c u l a t e the sum of a l l random numbers
sum =0;
for (i = 0 ; i N; i ++)

sum+=RandomNumber [i] ;

20 / / C a l c u l a t e the mean of the array
mean=sum / N;

System . out . p r i n t l n (" The mean of "+N+" random numbers \n"+
" between 0 and 1 is "+mean+" !") ;

25

Here we first declare a double array called RandomNumber and create it in Line 13. Then we store
the random numbers in the array and afterwards calculate the mean. The last important point to address is
the copying of arrays. You can not just write

30 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

int[] array1 = {1,2,3,4,5};
int[] array2;
array2 = array1; // WRONG ! - ERROR !

This would only copy the reference of the array1 object to the array2 object, not the values, the memory
address is the same. To copy the values of arrays you have to use the arraycopy() method of the
java.lang.System class. So to copy an array in the above example, you have to write:

System.arraycopy(array1,0,array2,0,array1.length);

This copies all elements of array1 to array2 staring from element 0. The remaining parts of array2 are not
created!

0.6.1 Arrays in Java 2
A new class Arrays in the java.util package has been introduced in Java 2, which is of great inter-
est not only to scientific programmers. It includes methods for sorting arrays of arbitrary type using an
improved version of the Quick-sort9 algorithm. So to sort a whole array of double values into ascending
numerical order, you just have to use

/* JAVA 2 */
import java.util.*;
double[] array = new double[1000];
....
Arrays.sort(array,0,1000); // to sort the whole array

You can even sort an array of strings or arbitrary objects, although the algorithm used for the object sorting
is allowed to vary from one implementation of the virtual machine to another.

Another new functionality is the fill() method. Often you want to assign a value to a whole array
of doubles for example. In Java 2 you can do this using

/* JAVA 2 */
import java.util.*;
double[] array = new double[1000];
Arrays.fill(array,1.0);

which sets the whole array to 1.
Furthermore there is a comparison method for arrays called

Arrays.equals(double[], double[])

for all data types and last but not least there is a binary search algorithm to find a value in an (sorted) array.
So for example to find the index of the array element equal to 2.5 you can use the code:

/* JAVA 2 */
import java.util.*;
double[] array = new double[1000];
....
Arrays.sort(array);
int index = Arrays.binarysearch(array, 2.5);

0.7 Parameters from the Command Line or a HTML File
0.7.1 Parameters from the command line
The access of parameters given on the command line is as easy as it is in C and C++. The parameters are
stored as strings in Java and are given as the parameters to the main() method of the application. That is
the reason for the Syntax:

9This is a sorting algorithm, which is very versatile and efficient for most datasets. For details see [?]

0.7. PARAMETERS FROM THE COMMAND LINE OR A HTML FILE 31

public void main(String[] args)

It means that the array args contains the parameters. Each parameter is separated with a space in the
command line. Here is an example of a program using command line parameters:

Listing of ParamCommandLine.java

publ i c c l a s s ParamCommandLine
publ i c s t a t i c void main (S t r i n g [] a rgs)

in t N;

5 / / Number of parame ter s on the command l i n e
N= args . l e n g t h ;

i f (N 0)
/ Output a l l parame ter s each in a l i n e /

10 for (in t i = 0 ; i N; i ++)
System . out . p r i n t l n (" Parameter No. "+i +" : "+ args [i]) ;

e l s e
15 / No parame ter s are g iven /

System . out . p r i n t l n (" NO parameters specified !") ;

20

So if you run the program as java ParamCommandLine 12 34 abcd t5 the output on the screen
will be

Parameter No. 0 : 12
Parameter No. 1 : 34
Parameter No. 2 : abcd
Parameter No. 3 : t5

and if you don’t supply parameters it will be

NO parameters specified !

We also see the concatenation of strings in the output statement. And because you can only supply one
argument to the println() method, you have to concatenate all outputs to one long string.

0.7.2 Parameters from a HTML le
In applets there is no command line to supply parameters. So, in order to transmit parameters from the
calling HTML file to the Java applet we have to proceed in a different way. In the HTML file you can
specify <PARAM> attributes.

Listing of ParamApplet.html

HTML HEAD TITLE Test / TITLE /HEAD BODY
Text !

P
APPLET code ="ParamApplet.class" width =400 h e i g h t =200

5 PARAM name="NumberofPoints" va lue ="10000"
PARAM name="DisplayText" va lue ="This_is_a_test_parameter!"

Browser not c a p a b l e of d i s p l a y i n g a p p l e t !
/APPLET /BODY /HTML

32 CHAPTER 0. INTRODUCTION TO PROGRAMMING IN JAVA

In this case we supply two parameters, called NumberofPoints and DisplayText to the Java
applet. The value is given in the string behind the keyword value. The Java applet to this HTML file
could look like this:

import j ava . a p p l e t . ;
import j ava . awt . ;

/ Create an App le t /
5 publ i c c l a s s ParamApple t extends Apple t

publ i c in t NumberPoints ;
publ i c S t r i n g t e x t p a r a m ;

/ Get the parame ter s from the HTML f i l e /
10 publ i c void i n i t ()

NumberPoints = I n t e g e r . p a r s e I n t (t h i s . g e t P a r a m e t e r ("NumberofPoints")) ;
t e x t p a r a m = t h i s . g e t P a r a m e t e r ("DisplayText") ;

15 / D i sp lay the parame ter s in the window /
publ i c void p a i n t (Graph ics g)

g . d r a w S t r i n g ("Parameter NumberofPoints is "+ NumberPoints , 2 0 , 5 0) ;
g . d r a w S t r i n g ("Parameter DisplayText is \""+ t e x t p a r a m +"\"" , 2 0 , 8 0) ;

20

In the init() method we get the parameter NumberofPoints and convert it to an integer using a
wrapper method. The string of the parameter DisplayText doesn’t have to be converted. Then in the
paint() method we display the transmitted parameters on the screen. The output in the appletviewer or
in Netscape should look like this:

Parameter NumberofPoints is 10000

Parameter DisplayText is "This_is_a_test_parameter!"

Chapter 1

Object Oriented Programming and
Advanced Java Features

The biggest step you have to take in mastering Java if you are coming from the Fortran or C community,
is to switch to the object oriented paradigm. Although C++ programmers are used to objects, there are
quite a number of differences to C++ in Java. That is why Java xis closer to C than to C++. Since the
notions of classes, objects, and methods are quite abstract we want to introduce them with the help of a few
examples. First we discuss a classical example from probability theory, the Buffon needle problem using
a procedural program and an object oriented version. A second example will be a class for calculating
statistical properties of a set of data points stored in a double array.

1.1 A Classical Example: The Buffon Needle
It seems that the earliest documented application of stochastic simulation methods to the solution of an
integral has been advanced by Comte de Buffon 1. The famous Buffon needle problem has been formulated
in 1733 but published only in 1777. It is supposed to be the first experiment, a kind of analogue simulation,
in the context of geometric probabilities. The problem can be stated in the following way: A needle
of length 2l is drawn at random onto a horizontal plane ruled with straight parallel lines. The distance
between the lines is 2d d l . What is the probability P that the needle will intersect one of these lines?

In fact Comte de Buffon performed the experiment of throwing the needles many times to determine
the probability P. He also carried out the mathematical analysis of the problem which we want to review
shortly.

For convenience we denote by x the distance of the middle point of the needle to the nearest line and by
(0 # ") the angle between the needle and this line (see Fig. (1.1)). The quantities x and # completely
determine the position of the needle. It is evident from Fig. (1.1) that the needle crosses the line only if the
condition

x l sin# (1.1)

is satisfied.
Let us look at the possible positions of the needle in the x–# plane (see Fig. (1.1)). All positions lying

below the l sin# curve between the abscissa 0 and " satisfy the condition (1.1). The surface of this region
is immediately found by integration, F 2l. The surface F is a measure for the set of all positions of the
needle which cross one line. On the other side it is clear that "d is am measure for the surface of all possible

1Georges Loui Leclerc Comte de Buffon (Montbard (Dijon) 7. 9. 1707, Paris 16. 4. 1788). He was director of the Jardin des
Plants in Paris and since 1753 member of the Académie française. His work “Histoire naturelle”, in which theories about the origin of
the earth and of its organisms aare discussed, was one of the most famous and translated works of the Age of Enlightment. Influenced
by I. Newton he sustained the scientific method based on observation and experiment. His work contains many ideas which entered
furure scientific theories.

33

34 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

2d

2l

x

Figure 1.1: The Buffon needle problem. Definition of the variables x and #.

positions of the half needle. The ratio of the two measures 2l "d is the probability we were looking for,
i.e.,

P
2l
"d

(1.2)

Some years later (???) Laplace 2 recognized that the idea behind the Buffon needle experiment could
be used to evaluate " from the throws of the needles. Today we would call this a Monte Carlo determination
of ". If we repeat the experiment N times and count the number of times the needle crosses a line M, the
probability P can be estimated by the relative frequency of hits

P M N (1.3)

and hence we have with Eq. (1.2)

"
2lN
dM

(1.4)

Now, let us try to write a Java code for the simulation of the Buffon needle problem.

1.2 The Traditional (Procedural) Approach
The traditional approach is straightforward. You just draw N needles and check for each one if it crosses
a line or not. So there are two subroutines. One creates a new needle with all four coordinates. And the
second one is a routine, which just compares the lines with the needle coordinates, whether it crosses the
lines or not. You then count the number of crossings and you get the final estimate of ".

2Pierre Simon Marquis de Laplace, Beaumont–en–Auge 28.3.1749 5.3.1827 Paris. Laplace was one of the leading french
mathematicians of his time. Before being a member in the Académie des sciences and a Professor at theÉcole Normale in Paris
(1794) he was an examinator at the École militaire in Paris, where in 1785 he examined Naploéon Bonaparte. The most important
contributions of Laplace where in celestial mechanics, cosmology, mathematical physics and, probability theory. In his work “Théotie
analytique des probabilités” (1812) he develops for the first time a systematic mathematical treatment of probabilistic problems.

1.2. THE TRADITIONAL (PROCEDURAL) APPROACH 35

x

0

F

d

Figure 1.2: The Buffon needle problem. The x–# plane (schematically).

/ Procedura l Vers ion of the Bu f fon Needle problem /

publ i c c l a s s B u f f o n P r o c e d u r a l
/ some c o n s t a n t s of the problem /

5 f i n a l s t a t i c in t NumberOfRows =10;
f i n a l s t a t i c in t NeedleLength =20;
f i n a l s t a t i c in t TableWidth =200;
f i n a l s t a t i c in t Tab leHe igh t = NeedleLength NumberOfRows ;

10 / The main program /
publ i c s t a t i c void main (S t r i n g [] a rgs)

in t N=20000 ; / / number of n e e d l e s to be drawn
in t c r o s s = 0 ; / / number of c r o s s i n g s , which occured
double [] need lePos = new double [4] ; / / p o s i t i o n s of the n e e d l e s

15
/ / The loop over a l l n e e d l e s to be drawn
for (in t i = 0 ; i N; i ++)

/ / c r e a t e a random need le : c a l l method drawNeedle ()
need lePos = drawNeedle () ;

20 / / I s the need le c r o s s i n g a l i n e ???
/ / use the method checkNedd le ()
i f (checkNeedle (need lePos) = = true) c r o s s ++;

/ / The v a r i a b l e cross c o n t a i n s the number of i n t e r s e c t i o n s
25 System . out . p r i n t l n (" crossings = "+ c r o s s +"; N = "+N) ;

/ / The e s t i m a t e for pi i s p r i n t e d
System . out . p r i n t l n (" Estimated value of pi="

+ 2 (double) N/ c r o s s) ;

36 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

30
/ Create a need le at a random place and a random o r i e n t a t i o n /
p r i v a t e s t a t i c double [] drawNeedle ()

/ / s t o r e the p o s i t i o n of the need le : (X0 , Y0) to (X1 , Y1)
double [] p o s i t i o n = new double [4] ;

35 / / dummy v a r i a b l e s
double de l t aX , de l t aY , ys ign ;

/ / c r e a t e s t a r t i n g p o s i t i o n for the need le
p o s i t i o n [0]= TableWidth Math . random () ;

40 p o s i t i o n [1]= Tab leHe igh t Math . random () ;
/ / c r e a t e the end p o i n t s of the need le
de l t aX = NeedleLength Math . s in (2 Math . PI Math . random () Math . PI) ;
de l t aY = Math . s q r t (NeedleLength NeedleLength de l t aX de l t aX) ;
ys ign = (Math . random () 0 . 5 ? 1 : 1) ;

45 / / s t o r e the end p o i n t s of the need le
p o s i t i o n [2]= p o s i t i o n [0]+ de l t aX ;
p o s i t i o n [3]= p o s i t i o n [1]+ de l t aY ;
/ / r e t u r n the p o s i t i o n of the s t a r t and e n d p o i n t s of the need le
return p o s i t i o n ;

50

/ Check i f a need le c r o s s e s a l i n e :
The p o s i t i o n of the need le i s s u p p l i e d and i t r e t u r n s t r u e
or f a l s e . /

55 p r i v a t e s t a t i c boolean checkNeedle (double [] need le)
/ / loop over a l l l i n e s in the plane
for (in t yLine = 0 ; yLine =NeedleLength NumberOfRows ;

yLine += NeedleLength)
/ / check i f t he s t a r t and e n d p o i n t s are on o p p o s i t e

60 / / s i d e s of the l i n e : i f yes r e t u r n the method wi th t r u e
i f ((need le [1] = yLine && need le [3] = yLine)

(need le [1] = yLine && need le [3] = yLine)) return true ;

/ / i f no l i n e i s c r o s s e d by t h i s need le , r e t u r n f a l s e
65 return f a l s e ;

First of all we have made use of the Math.random() method, which draws a random number (a
double) between 0 and 1. We also used arrays to store the coordinates and even used arrays as param-
eters to subroutines (methods). The program basically consists of one loop, which first creates a needle
and then checks if the needle crosses one of the lines in the plane. The first part is done in the method
drawNeedle() and creates at random the positions of the start and endpoint of the needle. These four
coordinates are returned and stored in the array needlePos. The method checkNeedle() uses the
positions as arguments and checks if one of the lines is crossed by the needle, defined by the supplied
coordinates. The variable cross counts the number of crossings, which have occured so far. After the
loop has finished we print the results on the screen.

1.3 The Object Oriented Approach - Classes and Objects

Before we begin to write the object oriented code we have to introduce some formal aspects of the Java
language.

1.3. THE OBJECT ORIENTED APPROACH - CLASSES AND OBJECTS 37

1.3.1 Denition of Objects
We have already met a lot of object oriented features without discussing them in detail. For example, we
already noticed that the fundamental unit of programming in Java is the class. A concise definition of
classes and objects in Java could be:

A class is a collection of data and methods that operate on that data. In Fortran or C we call the
methods procedures or functions. An object is an instance of the class, meaning it is a thing
to work with. The class defines the data necessary for the object and the functions which can
operate on them.

In other words, like in other languages you can compute only with primitive types (integer, float, ...)
but you can also create and manipulate objects. An example already familiar to us, is the array. If you have
an array object you can call the method length to get the number of elements of the array.

So what is the difference to the standard function approach here? Instead of using function arguments
you supply the argument by putting them in front of the method separated by a point, e.g., args.length.
The missing brackets on the length method is not a miss-print, the Java engineers thought it might ease
writing array code, but actually it confuses sometimes. Still it is the most easy demonstration of calling a
method of a class.

To calculate the mean of an array of doubles, you can either write a method which takes the array as an
argument (like you would in Fortran or C) or you can use the object oriented feature:

import VisualNumerics.math.*;

double[] array = new double[100];
for (int i=0; i<100; i++) { // create a random array

array[i]=Math.random(); }
double result;

Functions

result=Statistics.average(array);

Object Oriented

Data dat = new Data(array);
result = dat.average();

The program for the the functional approach is contained in the JNL package and can be used directly.
But the second approach needs a new class to be defined by ourself. So here is the code to get the second
example working. Store this in a seperate file in the same directory and compile it before compiling the
code above.

publ i c c l a s s Data
double [] da t a ;

/ / The c o n s t r u c t o r : c a l l e d by : new Data (array) ;
5 Data (double [] a r r a y)

da ta = new double [1 0 0] ;
for (in t i = 0 ; i a r r a y . l e n g t h ; i ++)

da ta [i]= a r r a y [i] ;

10
/ / The method for comput ing the mean (average)
double ave rage ()

double sum =0;

15 for (in t i = 0 ; i da t a . l e n g t h ; i ++)
sum = sum + da ta [i] ;

sum = sum / da ta . l e n g t h ;
return sum ;

20

38 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Which version you prefer seems to be a matter of taste. But because all programs in Java are actually
classes we have to understand at least the fundamentals of object oriented programming. Later on we will
have learned the beauty and clarity of the object oriented approach and the question will turn into: Why do
we need the procedural approach?

Just to remind you again, strings are objects and not primitive types. To use strings you first have to
declare and instantiate a string object. Here are three possible ways of doing it:

String text;
text = "Test String";
text = new String();
text = new String("Test String");

The first line only declares a string object called text and does not allocate (instantiate) the memory for the
value of the object, just the reference to the value. The second line instantiates and defines the String object
text. The third line instantiates, but does not define it and the fourth line is like the second line, with the
second line being more efficient in memory consumption and speed.

An important example of calling methods of classes or objects is the .length() method of the
String class. In contrast to the length method for the arrays, we have to write the brackets this time.
For example the length of a string can be printed by using

String s = "text test";
System.out.println("The length is:"+s.length());

And if you want to convert the letters of a string to lower case, you can use the toLowerCase()method,
e.g.

String s = "TEST Text";
System.out.println("in lower case letters :"+s.toLowerCase());

1.3.2 The Code of the Object Oriented Approach
Now we want to write a Java code which allows the simulation of the Buffon needle problem. It is clear
that in the problem at hand “needles” will play a central role. Each needle may be described by the x– and
y–coordinates of its two ends. Of course, for each needle we can check whether it crosses a line or not. We
draw needles at random so different needles will have different coordinates. However, needles have also
generic properties which justify to define needles as a class!

The listing of the Needle class can be seen below. We are going to explain basic concepts while
discussing this example.

/
A c l a s s r e p r e s e n t i n g a need le of the Bu f fon Needle Problem

/

5 publ i c c l a s s Needle
/ / These are the data f i e l d s of the c l a s s
double needleX1 , needleX2 , needleY1 , needleY2 ;

/ we have to f i x some c o n s t a n t s : c l a s s v a r i a b l e s
10 t h e s e can be changed ! ! /

s t a t i c in t need leLeng th = 2 0 ; / / De f ine l e n g t h of the n e e d l e s
s t a t i c in t numberOfRows = 1 0 ; / / De f ine number of rows
/ De f ine the s i z e of the t a b l e on which the n e e d l e s l i v e .

These are f i x e d c o n s t a n t s and can not be changed /
15 f i n a l s t a t i c in t t a b l e H e i g h t = need leLeng th numberOfRows ;

f i n a l s t a t i c in t t a b l e W i d t h = 2 0 0 ;

/ This i s the main c o n s t r u c t o r :
I t c a l c u l a t e s the p o s i t i o n of the Needle o b j e c t /

1.3. THE OBJECT ORIENTED APPROACH - CLASSES AND OBJECTS 39

20 publ i c Needle ()
double de l t aX , de l t aY ;
in t ys ign ;

/ / Create the c o o r d i n a t e s of s t a r t i n g p o i n t
25 t h i s . needleX1 = t a b l e W i d t h Math . random () ;

t h i s . needleY1 = t a b l e H e i g h t Math . random () ;
/ / c r e a t e the c o o r d i n a t e s of end p o i n t
de l t aX = need leLeng th

Math . s in (2 Math . PI Math . random () Math . PI) ;
30 de l t aY = Math . s q r t (need leLeng th need leLeng th de l t aX de l t aX) ;

ys ign = (Math . random () 0 . 5 ? 1 : 1) ;
t h i s . needleX2 = t h i s . needleX1 + de l t aX ;
t h i s . needleY2 = t h i s . needleY1 + ys ign de l t aY ;

35
/ This i s the method C r o s s I n s p e c t i o n which checks whether

the Needle c r o s s e s a l i n e or not . /
publ i c boolean c r o s s I n s p e c t i o n ()

for (in t yLine = 0 ; yLine =need leLeng th numberOfRows ;
40 yLine += need leLeng th)

i f ((needleY1 =yLine && needleY2 =yLine)
(needleY1 =yLine && needleY2 =yLine))
return true ;

45
return f a l s e ;

The main structure is as follows: The first lines define the variables and constants, which a needle
should have, like the length and the position of the needle. These are both properties of each individual
needle contrary to the table dimensions. These are still properties of the problem, but they belong to a
whole set of needles, not only to one. This is visible in the static modifier used in front of the variable
definition. So we could actually define more than one table each consisting of many needles and having
different table dimensions, let us call them planes.

The next part is the constuctor of the class. The constructor is the code, which gets called if a new object
of this class is created with thenew keyword. Here you call the constructor by usingNeedle draw = new Nee-
dle(); and the constructor just creates a new needle for this collection of needles belonging to this plane.

The third part is a method, which returns a boolean variable, telling us if the needle we are just using
is crossing a line of the plane or not. The difference to the procedural approach enters here: How does
the method know, which needle to check? This is coded into the calling program, which takes an object
of the needle class and let the method crossInspection() operate on this object. Because the object
consists of all the information necessary for the method, all the data necessary is already supplied.

Now we are going to talk about these topics in greater detail and try to structure all the ideas we have
just encountered.

1.3.3 Class variables, Constants and Modiers
The needle class has four fields which correspond to the four coordinates which specify the position of the
needle. The term fields is used in Java as a synonym for variables. These are the variables different for
each needle.

Furthermore, we need some specification for the geometry involved in the problem. They are of course
not specific to the individual needle, but for all the needles of a given setup or table. To tell Java that these
variables are for all needles in this setup, you supply the static keyword. The static modifier defines

40 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

a field (variable), which is belonging to the class and not to the object. So every object of that class has the
same value for a static field.

The public modifier on the other hand defines a field or method, which is special to an object not to
the class – this is also called an instance field or method, the static version is called a class variable or
method.

Some of the fields are defined with the final keyword. This is the equivalent to the const keyword in
C. Here the variables with the final keyword are not allowed to change anymore, e.g. the table dimensions.

There is a nice feature to be used with the final keyword. You can define a final variable, actually computed in an
arbitrary method. The method is then executed before any other code of the program, even before the main method.
An example would be:

publ i c c l a s s T e s t F i n a l

publ i c s t a t i c f i n a l double Pi = computePi () ; / / c a l l method
15

publ i c s t a t i c double computePi ()
System . out . p r i n t l n ("I am doing precalculations !") ;
return Math . PI ;

20
publ i c s t a t i c void main (S t r i n g [] a rgs)

System . out . p r i n t l n (Pi) ;
System . out . p r i n t l n (Pi) ;

25
/ / T e s t F i n a l

In Table 1.1 we give an overview of some available modifiers. A graphical representation of the access

Table 1.1 Overview of some available modifiers in Java, see also Figure 1.3. For a complete overview take
a look at page 230-234 in Flanagan [1997].

Modifiers
final variables may not be changed, methods can not be over-

written, classes may not be subclassed
public accessible from anywhere
static defines a top-level class, a class variable (field) or a class

method
private only within the defining class visible, not in other pack-

ages, even if subclass of this class
protected accessible within the package in which it is defined and

within subclasses
(none) accessible only in its package

control of variables and objects is in Figure 1.3.
It is important to remark that class variables and methods are the closest relatives to global variables in

all the other languages. They are accessible from all classes, but still are belonging to a class. So you could
have two class methods with the same name, but for different classes.

Having fixed also some constants, e.g. " and the distance between parallel lines, we have to initialize
the class. This is done by means of the constructor.

1.3.4 The Constructor
An important part of any class is the constructor of the class. This is the method (function), which is called
when an object of this class is instantiated. It always has the same name as the class itself. The constructor
can have zero or more arguments and you can even have different constructors depending on the parameters
provided by the calling syntax.

1.3. THE OBJECT ORIENTED APPROACH - CLASSES AND OBJECTS 41

everywhere

package 1

package 2
subClass of Class A

Class A

publicDefault (no modifier used)

protected

private

subClass of Class A

Figure 1.3: A graphical overview of the access control of variables and objects/classes in Java.

The constructor of a class ALWAYS calls the constructor of its superclass, so it is good practice to write
super(); at the beginning of a constructor to indicate this feature. Because the constructor of the super
class also calls the constructor of its super class again, this is called “Constructor Chaining”.

In our example a needle is initialized in the following way. We draw at random the four coordinates
needleX1, needleX2, needleY1, and needleY2 which determine the position of the first needle.
Note, that we have made use of the keyword this. This keyword is always required when the argument of
a method or a local variable in a method have the same name as one of the fields in the class. If the method
is simple, as it is the case here, it is not necessary to be that careful.

Here in our example, the constructor just sets the four coordinates and does not need any parameters to
instantiate the needle.

1.3.5 Methods and Class Methods
Having initialized the class we now want to define some methods in our Needle class. There is only one
method in our class, which is the crossinspection() method. The return type of methods always
has to be specified, if there is no return value you have to use the void statement (as in C). The value to
be returned is specified by the return keyword.

The methodcrossInspection checks whether a needle crosses a line or not. ThecrossInspection
method returns a boolean telling you, if the needle crosses a line or not. Note that the variable cross has
been defined as a class variable with the help of the modifier static and gets incremented every time you
check a needle, which crosses a line. With this method our Needle class is complete.

Next we need to look at the class Buffon.java which contains the main method and demonstrates
how to use the Needle class, which is our first example of object oriented coding.

/ This i s the program Buf fon which s i m u l a t e s the b u f f o n need le
us ing the Needle o b j e c t .
Ob jec t Or ien ted Approach /

5 import Needle . ;

42 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

publ i c c l a s s Buffon
publ i c s t a t i c void main (S t r i n g a rgs [])

Needle draw ;
10 in t h i t ; / / how many n e e d l e s h i t one of the l i n e s

f i n a l in t N=20000 ; / v a r i a b l e may not be changed by the program
N d e n o t e s the number of t r i a l s /

/ In the f o l l o w i n g loop we draw N Need les .
15 To t h i s end we have to c r e a t e n e e d l e s wi th the c o n s t r u c t o r

of the Needle c l a s s .
We check whether a Needle c r o s s e s a l i n e wi th the
c r o s s I n s p e c t i o n method of the Needle c l a s s . /

h i t =0;
20 for (in t i = 0 ; i N; i ++)

/ / c r e a t e a new need le
draw =new Needle () ;
/ / check i f need le c r o s s e s a l i n e
i f (draw . c r o s s I n s p e c t i o n () = = true)

25 h i t ++ ;

/ F i n a l l y we p r i n t the r e s u l t /
System . out . p r i n t l n (" Table width : " +Needle . t a b l e W i d t h) ;

30 System . out . p r i n t l n (" Table height : "+Needle . t a b l e H e i g h t) ;
System . out . p r i n t l n (" Number of Rows : "+Needle . numberOfRows) ;
System . out . p r i n t l n (" Needle Length : "+Needle . need leLeng th) ;
System . out . p r i n t l n () ;
System . out . p r i n t l n (" crossings ="+ h i t +"; N="+N) ;

35 System . out . p r i n t l n (" Estimated value of pi="
+ 2 (double) N / h i t) ;

By defining the Needle class in Java, we have created a new data type. Variables of this type can be
declared by

Needle draw;

draw is simply a name that refers to a Needle object (references the object). Creating dynamically an
object is done with the help of the new keyword

draw = new Needle();

Next, in a for loop we draw N needles and with the help of the crossInspection method we check
whether the needles cross the lines or not and the class variable cross is set accordingly. Finally, the
result, i.e. the estimated value for " is printed.

1.4 Another Example: Calculating the Mean

Another example demonstrates how to create a class for calculating the mean of a data set. The mean of a
data set xi i 1 N is of course defined as

mean x x̄ :
1
N

N

i 1
xi

1.4. ANOTHER EXAMPLE: CALCULATING THE MEAN 43

The mean is also called the first moment as we will see later and there are higher moments. They are
defined analogously as

n-th moment xn :
1
N

N

i 1
xn

i

We want to show the different approaches of programming models in Java. You have basically three
choices, which are now presented.

1.4.1 “Program in One File” Approach
First we define variables to set the moments we want to compute. Then we instantiate and create the data
array as an array of random numbers between zero and one. Then after setting all the moments to zero,
wecompute the moments in a nested loop. The last step is dividing through N and printing the final result
on screen.

import j ava . u t i l . Random ;

publ i c c l a s s Moments a l l
publ i c s t a t i c void main (S t r i n g [] a rgs)

5 Random rand = new Random () ;
/ / Number of p o i n t s used
f i n a l in t N=50000;
/ / what moments are to be c a l c u l a t e d
in t m o m e n t s s t a r t =1;

10 in t moments end =20;
/ / d e c l a r e and i n s t a n t i a t e arrays
double [] moments ;
moments =new double [moments end m o m e n t s s t a r t +1] ;
double [] numbers ;

15 numbers =new double [N] ;

/ / c r e a t e N random numbers
for (in t i = 0 ; i N; i ++)

numbers [i]= rand . nextDouble () ;
20

/ / i n i t i a l i z e array of moments
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

moments [i] = 0 ;

25 / / C a l c u l a t e a l l t he moments
for (in t j = 0 ; j N; j ++)

for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)
moments [i]+= Math . pow (numbers [j] , i + m o m e n t s s t a r t) ;

for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)
30 moments [i] /= N;

/ / d i s p l a y the moments
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

System . out . p r i n t l n (" Moment #"+(i + m o m e n t s s t a r t)+
35 ": "+moments [i]+ " exact: "+

1 . 0 / (1 + i + m o m e n t s s t a r t)) ;

1.4.2 “Traditional Procedural” Approach
Now we take the computation of the moments and put it into a method. Then we call the method from
our main program. Because there is not much difference between the program before and this one, we just

44 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

present the differences.

20
/ / i n i t i a l i z e array of moments and c a l c u l a t e
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

moments [i]=0 ;
/ / Cal l method for c a l c u l a t i o n

25 moments [i]= calcMoment (numbers , N, i + m o m e n t s s t a r t) ;

/ Method for comput ing the moments /
publ i c s t a t i c double calcMoment (double [] a r r a y , in t N, in t moment)

double r e s u l t =0;
35 / / C a l c u l a t e a l l t he moments

for (in t j = 0 ; j N; j ++)
r e s u l t +=Math . pow (a r r a y [j] , moment) ;

return r e s u l t / N;

1.4.3 Object Oriented Approach
There are two programs: The first class is the main program using our own class. This has to be called.
The second one is the code for the data class itself and have to be compiled only. You can not start this
class.

We have written two different versions to express the difference between a class method and an object
method.

/ A c l a s s for data s e t s in 1 D
You can c a l l the compu ta t ion of the moments
wi th t h i s c l a s s in 2 d i f f e r e n t ways . /

publ i c c l a s s MomentsData
5 p r i v a t e in t N;

p r i v a t e double [] da t a ;

/ I n s t a n t i a t e an o b j e c t ho ld ing the data and the s i z e
of the data s e t /

10 publ i c MomentsData (double [] a r r a y)
t h i s . N = a r r a y . l e n g t h ;
t h i s . da t a = new double [t h i s . N] ;
System . a r r a y c o p y (a r r a y , 0 , t h i s . da t a , 0 , t h i s . N) ;

15 / Another p o s s i b l e c o n s t r u c t o r /
publ i c MomentsData (double [] a r r a y , in t N)

t h i s . N=N;
t h i s . da t a = new double [t h i s . N] ;
System . a r r a y c o p y (a r r a y , 0 , t h i s . da t a , 0 , t h i s . N) ;

20

/ The v e r s i o n 1 , which uses the data of the o b j e c t /
publ i c double calcMoment (in t moment)

double r e s u l t =0;
25 / / C a l c u l a t e a l l t he moments

for (in t j = 0 ; j t h i s . N; j ++)
r e s u l t +=Math . pow (t h i s . da t a [j] , moment) ;

return r e s u l t / t h i s . N;
30

1.4. ANOTHER EXAMPLE: CALCULATING THE MEAN 45

/ The v e r s i o n 2 , which uses a parameter for the data /
publ i c s t a t i c double calcMoment (double [] a r r a y , in t moment)

double r e s u l t =0;
in t N = a r r a y . l e n g t h ;

35 / / C a l c u l a t e a l l t he moments
for (in t j = 0 ; j N; j ++)

r e s u l t +=Math . pow (a r r a y [j] , moment) ;

return r e s u l t / N;
40

The class MomentsData includes some new code. First we use two constructors, whic have different
arguments and can therefore be distinguished by Java. Depending on the calling syntax using the new
keyword, you call the first or the second constructor.

Then there are two methods defined. Like with the constructor, they have the same name, but can be
distinguished by its argument list. This is called method overloading in Java. So again depending on the
calling syntax, you call the first or the second method.

Now we take a look at the main program, which uses the above classes.

import j ava . u t i l . Random ;

/ t he o b j e c t o r i e n t e d v e r s i o n us ing two d i f f e r e n t approaches /
publ i c c l a s s Moments objec t

5 publ i c s t a t i c void main (S t r i n g [] a rgs)
Random rand = new Random () ;
/ / Number of p o i n t s used
f i n a l in t N=50000;
/ / what moments are to be c a l c u l a t e d

10 in t m o m e n t s s t a r t =1;
in t moments end =20;
/ / d e c l a r e and i n s t a n t i a t e arrays
double [] moments ;
moments =new double [moments end m o m e n t s s t a r t +1] ;

15 double [] numbers ;
numbers =new double [N] ;

/ / c r e a t e N random numbers
for (in t i = 0 ; i N; i ++)

20 numbers [i]= rand . nextDouble () ;

/ Vers ion 1 /
/ / i n s t a n t i a t e an o b j e c t o f c l a s s MomentsData c a l l e d dat !
MomentsData da t = new MomentsData (numbers) ;

25
/ / i n i t i a l i z e array of moments and c a l c u l a t e
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

moments [i]=0 ;
/ / Cal l method for c a l c u l a t i o n ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

30 moments [i]= da t . calcMoment (i + m o m e n t s s t a r t) ;

/ / d i s p l a y the moments
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

System . out . p r i n t l n (" Moment #"+(i + m o m e n t s s t a r t)+
35 ": "+moments [i]) ;

System . out . p r i n t l n () ;

46 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

40 / Ver s ion 2 /
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

moments [i]=0 ;
/ / Cal l method for c a l c u l a t i o n ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
moments [i]= MomentsData . calcMoment (numbers , i + m o m e n t s s t a r t) ;

45
/ / d i s p l a y the moments
for (in t i = 0 ; i =(moments end m o m e n t s s t a r t) ; i ++)

System . out . p r i n t l n (" Moment #"+(i + m o m e n t s s t a r t)+
": "+moments [i]) ;

50

Up to line 21 there is nothing new, we just instantiate and create the data array. Then from line 22 to
line 38 the first version using instance methods is used. The second version from line 40 to line 50 is using
a class method. But both versions do exactly the same. The only difference is line 24 together with line 30
compared to line 44 in the second version.

1.5 Interfaces and Abstract Classes
Abstract classes/methods are also special classes, which can not be instantiated and contain no code for the
(abstract) methods. If you define some methods, which contain no code as abstract, you have to define the
whole class as abstract. You can subclass from an abstract class and override the abstract methods. You do
not have to override all abstract methods, but then the subclass is abstract too.

An even more important concept in Java is the interface. An interface is basically a (abstract) class,
which does not implement all the methods defined in the class. All methods have automatically the public
modifier and are abstract. Therefore you can create classes defining abstract methods, which should be
implemented somewhere else, maybe system dependent, e.g. if you use the native modifier. Interfaces can
be subclassed to create new interfaces.

Most of the GUI classes of the AWT introduced later are actually interfaces or abstract classes and not
just ordinary classes. Very useful is this concept for passing methods as arguments to other methods (see
section 1.8).

1.6 Extending (Inheritance) and Overloading (Overriding) Classes
Often you want to define subclasses, which should inherit all the methods and fields from another class.
This is easily done in Java by extending a given class. The meaning of sub-classing is the notion of data
hiding or encapsulation. For example you can write a subclass, which can not access all the variables of
the super class, therefore hiding some details.

You can reference the super (parent) class by applying the super modifier in front of a method or
variable of the parent class. And the this modifier always refers to the actual class.

You can also have equal names for a variable in the super class and the child class, which means you
have to reference the variables explicitly by using the super or this keywords. If you want to refer to a
variable two classes up from the actual class, you have to use the notion of “shadowing” [Flanagan, 1997],
which is a kind of casting with classes.

If you define a class to be final, it can not be extended. For example the java.lang.System class is a final
class.

Different from C++, you can not inherit from more than one class in Java, meaning that there is always
only one superclass for each class. The only way of having multiple inheritance is by using interfaces,
which we will not cover extensively in our introduction.

If you write a subclass you can overwrite methods already defined in the super class. This is called
overloading of methods, analogous to the C++ overloading. But in C++ you can even overload operators

1.7. THE SYSTEM CLASS: SCREEN-OUTPUT AND KEYBOARD-INPUT 47

like +, -, etc., which is not possible (in Java 1.1) yet.
A simple example is given by the HelloWorld Applet.java program in section 0.3.1. There we have

extended the Applet class of the Java.applet package and therefore making our program a subclass of the
Applet class. So we inherited all the methods and fields of that class. Then we overloaded the paint()
method to display our message. In the words of object oriented programming, writing an applet is called:
defining a subclass of the Applet class and overloading the methods of the Applet class as necessary.

One nice and important feature in Java is, that all classes which do not have an explicit parent, inherit
from the java.lang.Object class. So you can call this class the father of all classes. There are
only a few methods defined in this (abstract) class, which you can always override. For example the
toString() method is in java.lang.Object. If you override this method, you can define your
own objects, which can then be printed by the usual println() commands.

As an example let us write a simple class, which
In Table 1.2 all methods defined in java.lang.Object are displayed.

Table 1.2 All methods belonging to the (abstract) java.lang.Object class.
public boolean equals (Object obj);
protected Object clone() throws

CloneNotSupportedException, OutOfMemoryError;
public String toString ();
public int hashCode();
protected void finalize() throws Throwable;

If you want to find out about all methods and fields available in the java.lang.object class
in detail, you just take a look at the Java API docuementation of the JDK. There in the package API
documentation you click on the package java.lang and then on the class object and you get the full
description of the class with all methods and fields.

1.7 The System Class: Screen-Output and Keyboard-Input
Now we are in a place to discuss the System.out.println() statement already used in the “Hel-
loWorld” program. This is calling the println() method of the PrintStream class of the java.io
package. And the out is a variable from the System class of the java.lang package, referencing the
PrintStream class.

There are also two more variables callederr and in for error output and data input. The java.lang.System
class in general provides an platform-independent interface to some system functions.

Here an example demonstrating some of the material we have learned and explains how to get any kind
of input from the keyboard. It waits for an user input and just echoes the typed characters until you type
the word “Java”.

/ A program to d e m o n s t r a t e keyboard i n p u t , escape codes
and s t r i n g (o b j e c t) compar i sons /

import j ava . io . ;
5

publ i c c l a s s Sys tem Class
publ i c s t a t i c void main (S t r i n g [] a rgs) throws IOExcep t ion

/ c r e a t e o b j e c t to read l i n e s of t e x t from the user
f i r s t : a reader o b j e c t fo r Sys tem . in (keyboard) /

10 Reader r e a d b u f f e r = new I n p u t S t r e a m R e a d e r (System . in) ;
/ second : a b u f f e r e d i n p u t fo r the keyboard /
Buf fe redReade r i n p u t = new Buf fe redReade r (r e a d b u f f e r) ;
System . out . p r i n t l n ("To exit please type the word \"Java\".") ;

15 for (; ;) / / Loop f o r e v e r u n t i l i n p u t of the word ”Java ”

48 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

System . out . p r i n t ("Please type a word: ") ;
/ Read a l i n e from the user us ing readL ine () /
S t r i n g l i n e = i n p u t . r eadLine () ;
/ I f we reach the end of f i l e ,

20 or i f t he user t y p e s ”Java ” , then q u i t /
i f ((l i n e = = nul l) l i n e . e q u a l s ("Java")) break ;
/ O therwi se j u s t echo the word /
System . out . p r i n t l n ("You typed : "+ l i n e +"\n") ;

25

Let us analyze the program: First look at line 19, where we have used the print() method of the
System class. It does the same as println(), but does not jump to the next line after the output.

Then take a look at line 23, where we compare two strings. We have to use the equals() method
of the String class to compare the value of two strings and not the references. In line 25 we use the string
concatenation operator for the output.

By the way, you have probably already noticed, that the for(;;) loop in line 17 is a endless loop.
The actual input takes place in line 21, where we assign the input to the string line. The method used

is readLine(), which is a method of the BufferedReader class. It reads input until a carriage return
is reached. The actual object of the BufferedReader class is created in line 13. To that end we have to
create a Reader class for the InputStream called in just mentioned above (this is done in line 11).

Because we are using I/O commands, we have to take care of exceptions which can occur during the
I/O. For that reason we have to use the throws IOException statement in the definition of the main
class (see line 7).

A last remark concerns the escape codes used in line 15 and line 25. The first one, ” displays a
quotation mark and the second one a newline. To include arbitrary formatting (escape) characters to
the string supplied to the print() and println() methods, you can use similar to C the \n, \t or \\
codes to get a newline, a tab or a backslash in the output. You should also note that, if you use e.g.
System.out.println(5+7) you get 12 as output, so if you want to see 5 7 you have to use

|System.out.print(5+" "+7)

Although this looks very complicated, if we do not want to go into details, just copy this part to a
program and reuse the code. But after we get used to object oriented programming we will not have any
problems understanding the code above anymore.

1.7.1 Easy Input and Lava Rocks printf()

Another easy solution is to use the EasyIn and the Printf() methods, supplied by our simulation
class and the ”Lava Rocks”3 package.

Easy Input You can easily use these methods to get input from keyboard for different primitive data
types. For example to input a primitive data types, you just use

import simulation.*;
.....
double d = EasyIn.readDouble(); // reads double from System.in
int i = EasyIn.readInt(); // reads int from System.in
float f = EasyIn.readFloat(); // reads float from System.in
boolean b = EasyIn.readBoolean(); // reads boolean from System.in
.....

3This is a freely available package, containing some easy to use methods, mostly for C programmers who switched to Java. For
details see Rose [1999].

1.7. THE SYSTEM CLASS: SCREEN-OUTPUT AND KEYBOARD-INPUT 49

Lava Rocks – printf()/sprintf()/fprintf() To use the Lava Rocks package you could write a code like

import lava.clib.*;
.....
int i=100;
float f=165.234f;
Stdio.printf ("%8d and %8.1f : test text\n", new Object [] {

new Integer(i), new Float (f) });
.....

Remember that you need the lava.jar file in the classpath. The output will look like

100 and 165.2 : test text

If you are familiar with the C routines, then you can find all the modifiers used for formatting the different
types of variables in Table 1.3. The modifiers represent the place, where the actual value of the variable

Table 1.3 All possible modifiers to be used in the format string given to the printf()/sprintf()/fprintf()
methods supplied by the Lava Rocks package.

Modifier Type to be formatted
%bd byte
%hd short
%d signed integer
%ld long
%u unsigned integer
%o unsigned octal integer

%x / %X unsigned hexadecimal integer (lower or uppercase)
%f float
%lf double

%e / %E float, scientific notation
%g / %G float, same as f or e, depending on value

%s String
%c character
%p object identity hash code in unsigned hexadecimal
% n platform independent line seprarator
%n counts characters

has to be inserted before the output is sent to the screen (or file, or string). So you have to make sure that
the order of the modifiers and the order of the supplied variables is correct, otherwise you get unpleasant
results or strange errors.

There are three additional things to mention: If you use the same format string (the first argument to
the printf method) very often, you can speed things up by saving the format string and only use the variable
every time, like:

import lava.clib.stdio.*;
.....
PrintfFormatString fmt =

new PrintfFormatString ("%8d and %8.1f : test text\n");

Now you can use fmt instead of the string in all printf commands and it will be much faster.
There is also an “easier” way of using printf without creating an object array, which is much more

inefficient and should be avoided.
And there is a platform neutral code for newlines: Use %\n instead of \n in the format strings and you

always get a newline, no matter which platform you run the program.
The same holds for the other two methods sprintf(), which writes the formatted output to a string-

buffer (we will discuss this in section 3.4.1 and in section 10.3.5 in more detail.), and fprintf(), which
writes the output to a file (actually a Writer, see section 3.4.1).

50 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

There is another free implementation of the printf command for Java called Format.java of the
corejava package. But it has much less functionality and so we decided to use the Lava Rocks imple-
mentation.

1.8 Passing Arguments to Methods
We want to review all the aspects concerning the passing of arguments to methods or – for former FOR-
TRAN programmers – passing arguments to subroutines/functions.

Global Variables First of all there is of course always the possibility to pass variables as global variables.
This is easy to use, but it makes it difficult to follow a program structure. So it is preferred to use arguments
to methods in an argument list.

Primitive Data Types The important point to note here is that Java always passes primitive data types
by value and all the other arguments by reference (reference data types). This means that all primitive
variables of the argument list can be changed within the method. The dummy variables used in the method
can be viewed as local variables.

Reference Data Types The reference data types (e.g. arrays, objects, etc.) are passed by reference and
therefore only the memory address is passed to the method. That is again the reason that by using the
standard assignment or comparison operators, you do not compare the values of the reference data type,
but the memory addresses where the data is stored. Therefore there is the equals() operator used for
comparing reference data types. By the way there is no method of getting the actual memory address for a
reference data type, which would be a severe security problem.

If you pass a reference data type to a method it should be clear, that every change of the dummy variable
used for the reference data type used in the method, will result in a change of the passed reference variable.
So for example for arrays:

.
publ i c void main (S t r i n g [] a rgs)

. . .
in t [] a r r a y = 1 , 2 , 3 , 4 , 5 ;

5 t e s t (a r r a y) ;
. . .

publ i c void t e s t (in t [] dummyarray)
in t l e n g t h =dummyarray . l e n g t h ;

10 for (in t j = 0 ; j l e n g t h ; j ++)
a r r a y [j]=0 ;

.

In this example we pass an array of integers, where the values are all not zero. In the subroutine we
change the values of the dummyarray array. But we passed only the memory location, so the change is
actually a change in the array array. If you print the result after the call to the method, all elements are
zero!

If you now think about changing a primitive data type inside a method passed to it, there is none. There
is actually no simple way of using reference types for primitive data types to change method parameters.

Instance Variables A nice and clear way of passing arguments between methods, is using instance vari-
ables. The problem here is that you have to create a new class and define instance variables for it. Then you
can instantiate an object of this new class and change the values of the instance variables from the main
program or the methods therein. But still you have the problem of passing the instance to the methods.

1.8. PASSING ARGUMENTS TO METHODS 51

Multi-Dimensional Arrays as arguments As a scientist you will always have the necessity to use arrays
as arguments to methods. There is actually no trouble with using for example a 1D array to a method, which
expects a 1D array. But what if you have a 2D array and the method needs a 1D array as an argument?
Should you copy a 1D row or column of the 2D array into a new 1D array and then call the method or is
there a better way?

The answer is yes, but not in all cases. You can always omit the last dimensions of an array. For
example if you leave out the second dimension of a 2D array, you get a 1D array, which is just the desired
row of the array. But there is no way of referencing a column. The following program demonstrates the
usage.

/
t e s t A r r a y . java

5
Created : Fri May 2 8 1 1 : 5 4 : 3 5 1 9 9 9

@author Pe ter B i e c h e l e
@version 1 . 0

10 /

publ i c c l a s s t e s t A r r a y

publ i c s t a t i c void main (S t r i n g [] a rgs)
15 / c r e a t e and i n s t a n t i a t e a 2 D array /

double [] [] a r r a y 2 ;
a r r a y 2 =new double [1 0] [1 0] ;
for (in t i = 0 ; i 10; i ++)

for (in t j = 0 ; j 10; j ++)
20 a r r a y 2 [i] [j]= j +10 i ;

t e s t (a r r a y 2 [1]) ; / / c a l l t he method wi th a row of a 2 D array
/ / t e s t (array2 [] [1]) ; / / This i s WRONG ! ! ! !

25
/ The method p r i n t s the 1 D array argument to

the s tandard o u t p u t to check the r e s u l t . /
s t a t i c void t e s t (double [] a r r a y 1)

for (in t i = 0 ; i 10; i ++)
30 System . out . p r i n t l n (i +" "+ a r r a y 1 [i]) ;

/ / t e s t A r r a y

Methods (Functions) as Arguments Especially for scientists it is of great importance to know how to
pass a function (method) to another method.

The first solution would be to write a method as a class method, therefore accessible from every instance
of the class and so you do not need to pass the method as an argument at all.

The second solution is much more versatile and general. But as always you have to do more work. You
need an interface, which defines the function you would like to pass to a method (Declaration). Then you
need a class, which implements this interface, therefore representing the real function (Implementation).
And at last you write your program/class, which instantiates the former class and now you can pass the
function by reference to all methods you like (Usage).

Here a short example:

52 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Declaration

interface function {
double f (double x);

}

Implementation

class SquareFunc implements function {
public double f (double x) {

return (x*x) ; // <----- here is the actual function
}

}

Usage This is the program, which uses the two classes/interfaces above.

/
T e s t P a s s i n g F u n c t i o n s . java

/
publ i c c l a s s T e s t P a s s i n g F u n c t i o n s

5 publ i c s t a t i c void main (S t r i n g [] a rgs)
SquareFunc f = new SquareFunc () ;
in t p o i n t s = 1 0 ;
double i n t e g r a l = i n t e g r a t e (f , 0 , 1 , p o i n t s) ;
System . out . p r i n t l n (" The integral is : "+ i n t e g r a l) ;

10

p r i v a t e s t a t i c double i n t e g r a t e (f u n c t i o n f , double a , double b , in t p)
double i n t e g r a l =0;
double dx = (b a) / p ;

15
for (double x=a+dx / 2 ; x b ; x+=dx)

i n t e g r a l += f . f (x) ;

return i n t e g r a l dx ;
20

/ / T e s t P a s s i n g F u n c t i o n s

1.9 Structure and Overview of Java
1.9.1 Packages in Java 1.1 and Java 2
Here we list all the standard packages (APIs) included in the Java 1.1 language standard. The important
packages (for our purposes) are written in small caps.

Java 1.1 Packages

JAVA.APPLET includes the superclass of all Java applets (small package)

JAVA.AWT the Abstract Windowing Toolkit (large package)

java.awt.datatransfer provides data exchange between programs

JAVA.AWT.EVENT event handling for the AWT (Mouse, etc.)

java.awt.image rarely used classes for image processing (use AWT)

1.9. STRUCTURE AND OVERVIEW OF JAVA 53

java.awt.peer rarely used interfaces for the AWT

java.beans interfaces and classes for beans programmer

JAVA.IO all the input/output classes (very big)

JAVA.LANG central Java language classes (largest package)

java.lang.reect part of the Java Reflection API (small)

JAVA.MATH arbitrary precision arithmetic (small)

java.net networking package

java.rmi RMI is Remote Method Invocation. It is a mechanism that enables an object on one Java virtual
machine to invoke methods on an object in another Java virtual machine.

java.rmi.dgc RMI distributed garbage-collection (DGC).

java.rmi.registry Methods to access the RMI registry.

java.rmi.server RMI server classes and methods.

java.security A security framework. This includes classes that implement an easily configurable, fine-
grained access control security architecture.

java.security.acl / java.security.cert / java.security.interfaces / java.security.spec Additional security fea-
tures.

java.sql Provides the JDBC (Java Database Connectivity) package. JDBC is a standard API for executing
SQL statements.

java.text for writing internationalized programs (date, time, etc.)

JAVA.UTIL useful classes, often used, e.g. millisecond time, calendar, random numbers, vectors, etc.

java.util.zip data compression and decompression classes

Java 2 Packages

Additional API packages in Java 2 are:

java.awt.color Provides classes for color spaces.

java.awt.dnd Provides interfaces and classes for supporting drag-and-drop operations.

java.awt.font Provides classes and interface relating to fonts. It contains support for representing Type 1,
Type 1 Multiple Master fonts, OpenType fonts, and TrueType fonts.

java.awt.geom The Java 2D classes for defining and performing operations on objects related to two-
dimensional geometry.

java.awt.im Classes and an interface for the input method framework. This framework enables all text
editing components to receive Japanese, Chinese, or Korean text input through input methods.

java.awt.image.renderable Classes and interfaces for producing rendering-independent images.

JAVA.AWT.PRINT A general printing API, including document types, page setup and formats and job
control dialogs.

java.beancontext A bean context is a container for beans and defines the execution environment for the
beans it contains.

54 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

java.lang.ref Provides reference-object classes, which support a limited degree of interaction with the
garbage collector.

java.rmi.activation Provides support for RMI Object Activation.

java.util.jar For reading and writing the JAR (Java ARchive) file format, which is based on the standard
ZIP file format with an optional manifest file.

javax.accessibility Defines a contract between user-interface components and an assistive technology that
provides access to those components.

JAVAX.SWING Provides a set of ”lightweight” (all-Java language) components that, to the maximum de-
gree possible, work the same on all platforms.

java.swingx.* There are 15 more packages in the Swing package, which we are not describing here in
detail. Take a look at the Swing tutorial or documentation.

org.omg.CORBA Provides the mapping of the Object Management Group (OMG) CORBA 4 APIs to the
Java programming language, including the class Object Request Broker (ORB), which is imple-
mented so that a programmer can use it as a fully-functional Object Request Broker.

org.omg.* 6 more packages are provided for using CORBA with Java. See the API documentation.

1.9.2 Reserved words in Java
The following words are reserved for Java and can not be used for names of classes, variables or methods:

abstract, boolean, break, byte, byvalue, case, cast, catch, char,
class, const, continue, default, do, double, else, extends,
false, final, finally, float, for, future, generic, goto, if,
implements, import, inner, instanceof, int, interface, long,
native, new, null, operator, oouter, package, private, protected,
public, rest, return, short, static, strictfp, super, switch,
synchronized, this, throw, throws, transient, true, try, var,
void, volatile, while, widefp

1.10 Name Conventions in Java
In order to make the Java codes more readable it is customary to stick to the followinh name conventions.

Classes and Interfaces. The names of classes and interfaces should consist of one or more words which
are concatenated. They should describe appropriately the class and the interface. The first letter of the
name is an uppercase letter. If the class name consists of more than one word, each word after the first one
begins with an uppercase letter, e.g., Needle, Reader, StringToken.

Methods. The names of methods are verbs or verb–phrases. They begin with lowercase letters. If the
name consists of more than one word, the second and all the following words begin with an uppercase
letter. To give some examples:

methods, which set the value of a variable or return the value of a variable begin with set or get;
e.g., setName, getData.

methods, which check some condition and return a result get the prefix is, e.g., isSmaller.

methods, which simply perform some conversions are characteized by the returned type and have the
prefix to, e.g., toString.

4Common Object Request Broker Architecture

1.11. JAVA DOCUMENTATION 55

If you stick to these rules you are already writing programs, which conform to the Java beans syntax. This
means you can take your programs and use them as beans later on with almost no changes (see section
1.15).

Instance Variables. Names for instance variables are words, nominal phrases, or short–hand notations.
Like names for methods the word begins with a lowercase letter and all following words begin with an
uppercase letter, e.g., next, dataVector, minValue.

Local variables or parameters. Local variables should get short names. Usually, they are named by
sequences of small letters. Typical examples are acronyms (the first letter of each word) of the name of
the class for a variable, which keeps a reference to an instanace of the class, e.g., rv for Random Variable
or short–hand notations, e.g., minx for the minimal value of the variable x. Single letter names should
be avoided, unless for temporary variables or variables, which are used in loops or for variables with an
uncertain value of some type: b for byte, c for char, d for double, e for Exception, f for float, i,
j, k for int, l for long, o for Object, s for String.

Constants. The names of constants may be composed by one or more words. All characteres are upper–
case letters and the words are joined by _, e.g., PI, MIN_VALUE.

Packages. Packages, which are only used locally are identified by a name which begins with a lower–case
letter. This word can not be java; this keyword is reserved for standard Java classes.

1.11 Java Documentation

As the time of writing the JDK (1.1 or 2) is distributed in a twofold way: The first one is the Java Runtime
Environement called JRE, which includes the Java virtual machine, the Java plugin for the Internet Explorer
and Netscape to run Java applets.

The second one is the complete package – the JRE and additionally all development tools to write Java
programs. The API documentation is included in the full package, but not in the JRE. The documentation
for the APIs is also available seperately.

In the directoryJAVA_HOME, on UNIX this could be/usr/local/jdk1.2,/usr/local/lib/jdk1.2
or /usr/lib/jdk1.2 and on Windows this might be c:\jdk1.2, you can find all the documentation
in the subdirectorydocs. It is best viewed using a web browser starting with the pagejdk1.2/docs/index.html
(see also Figure 1.4).

1.12 Applications and Applets Revisited

After discussing object oriented programming, we want to recapitulate the basic differences and features
of the two possible ways of writing and starting Java programs.

1.12.1 Applications

A Java application is in the traditional language a “normal” program. In Java slang it is a class, which only
has to have a main method, which has to be static and public. This is also of course the entrance
point, if you start the Java application. Then the program executes sequentially the code given in the main
method (of course it goes parallel, if you use threads somewhere in the application - see 10.3). There are
no restrictions of any sort using features in an application.

56 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

jdk1.1
jdk1.2

src.jar /
src.zip

classes.zip

docs

lib

bin

index.html

demo
(only 1.2)

Figure 1.4: The file structure of the JDK distribution, both the binary and the documentation package.

1.12.2 Applet
An applet is a Java class, which can be loaded into a virtual machine and can then be executed by it. For
example a web browser could load the applet, check if it is an applet allowed to be started on the machine
the browser is running on and then “starts the applet”.

This is basically the most confusing part of an applet: What are the instructions, which get executed
when the browser “starts the applet”? To that purpose go ahead and write a simple program (see the
program ShowTrace.java in the appendix B.1), which only prints out the place where the execution
just takes place and “start” the Java class on the command line as an application, in the appletviewer as an
applet and in a browser as an applet. What you will get is shown in figure 1.5.

So for the applets you have to write (implement) at least the init() method to get things going. But
now you will ask, why did we not supply an init() method when we wrote our first HelloWorld applet?
The answer is we did, but we did not write it explicitly, because we left it empty. The trick was that for
an applet there is always another thread (see Chapter 10.3 for an introduction to threads) running, which
takes care of (re)painting the windows (panels) used by the applet. This thread is a method of the AWT
package (see Chapter 2.2) and the method is the paint()method. And in the HelloWorld applet we have
overriden the paint() method to display our message.

Actually the threads and methods used for painting and repainting the windows or panels is a little bit
more tricky and involved, so we have to postpone the discussion to a later chapter. Here only the basics:
There is a method repaint(), which calls the update() method and that in turn calls the paint()
method, when there is time to do so. This sounds very complicated in the first place, but it will be resolved
later on.

There is another issue to be addressed here in the context of applets. So far we have always written
a separate HTML file to use with the appletviewer, which then in turn calls the applet itself. The burden
of having two files for one applet can be avoided by putting the HTML Code at the beginning of the Java
class file in a comment. Then if you call the appletviewer with the Java class file it executes the HTML
code supplied in the Java class file and starts the applet. It even starts in the Netscape Navigator, although it
probably makes no sense for large programs embedded in a set of HTML pages kept uptodate in a different
way as the Java source code. But it certainly eases writing small applets and getting not confused by too
many files on your disks.

Here a small example showing the described feature:

1.12. APPLICATIONS AND APPLETS REVISITED 57

Application Applet
Appletviewer Netscape Navigator 4

main()

init()

Constructor

Exit if all
 threads are done

Window Listener:
Exit on Window Close

Constructor

init()

Applet.start()

Thread.start()

run()

Thread.stop()

Applet.stop()

Constructor

init()

Applet.start()

Applet.stop()

run()

Thread.stop()

Thread.start()

Figure 1.5: The line of execution in an application and an applet in the appletviewer or the Netscape Navigator 4.08.
For the application only the part above the first line and below the second line are actually the parts, which can not be
avoided. The remaining part is just provided to show you how to write an application, which can be used as an applet,
too.

/
t e s t A p p l e t . java

/

5 / HTML
APPLET code =” t e s t A p p l e t . c l a s s ” width =500 h e i g h t =800 / a p p l e t
/HTML

/

10 import j ava . a p p l e t . ;

publ i c c l a s s t e s t A p p l e t extends Apple t
publ i c void i n i t ()

System . out . p r i n t l n (" !!!!!!! I am alive !!") ;
15

You can start it (first you have to compile it) by typing appletviewer test_applet.java or
in the Netscape Navigator type file:/home/user/test_Applet.java 5. Then on the command
line or the terminal with which you started the browser you see the short message.

1.12.3 Programs as Applets and Applications
??? GUIs

To write a class to be run as an applet and an application you can see in Figure 1.5 the correct order of
the methods, which get called in both cases. As an example, we have used the following template for the
bigger programs to have them run as an applet as well as a standalone application. We have to add code
to the run() and the Setup() methods to get a useful program. The Setup() method should contain

5You have to substitute the path by an appropiate one for your system and configuration.

58 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

all screen setup or preliminary work. In the run() method goes the computational intensive part of the
program.

/ Program , which can be run as an a p p l e t or an a p p l i c a t i o n /

import j ava . a p p l e t . ;
import j ava . awt . ;

5 import j ava . awt . even t . ;

publ i c c l a s s T e s t A p p l e t A p p l i c a t i o n extends Apple t implements Runnable
/ / Thread v a r i a b l e s
Thread c u r r e n t , c a l c T h r e a d ;

10 s t a t i c T e s t A p p l e t A p p l i c a t i o n prg ;

/ / AWT V a r i a b l e s
s t a t i c in t XSize = 5 0 0 , YSize =500;
s t a t i c Frame f ;

15
/ C o n s t r u c t o r : s e t up the Window / Panel wi th the GUI here /
publ i c T e s t A p p l e t A p p l i c a t i o n () / / empty c o n s t r u c t o r

/ t h i s i s c a l l e d by the a p p l i c a t i o n d i r e c t l y or by the browser
20 of the a p p l e t /

publ i c void s t a r t ()
c a l c T h r e a d . s t a r t () ; / / c a l l s the run () method ! !

25 / s t o p s the c a l c u l a t i o n thread , i f a p p l e t i s s topped /
publ i c void s top ()

c a l c T h r e a d . s top () ; / / c a l l t he s top () method ! !

30 / Main wrapper to run as a p p l i c a t i o n : d i s p l a y window and
s t a r t ca lc thread /

publ i c s t a t i c void main (S t r i n g [] a rgs)
f = new Frame ("Test Program") ;
f . s e t S i z e (XSize , YSize) ;

35 f . show () ;

prg = new T e s t A p p l e t A p p l i c a t i o n () ;
/ / Close Window e v e n t
f . addWindowLis tener (new WindowAdapter ()

40 publ i c void windowClosing (WindowEvent e)
prg . s top () ; System . e x i t (0) ;) ;

f . add ("Center" , prg) ;
f . r e p a i n t () ;

45 / / s t a r t program = Apple t
prg . i n i t () ;
prg . s t a r t () ;

50 / S t a r t s the c a l c u l a t i o n in the f i r s t p lace .
Gets c a l l e d by the main program or d i r e c t l y by the browser . /

publ i c void i n i t ()
i f (prg == nul l)

prg = t h i s ; / / do not c a l l the c o n s t r u c t o r again in the a p p l e t
55

1.13. HIGHER MATHEMATICS IN JAVA 59

Setup () ; / / s e tup the screen / GUI l a y o u t

c u r r e n t = Thread . c u r r e n t T h r e a d () ;
c a l c T h r e a d = new Thread (prg) ;

60 c a l c T h r e a d . s e t P r i o r i t y (c u r r e n t . g e t P r i o r i t y () 1) ;

/ The Screen / GUI se tup method /
publ i c void Setup ()

65 / / here we would put the GUI , e v e n t h a n d l e r s for b u t t o n s , e t c .

/ t h i s i s the run () method of the c a l c u l a t i o n thread /
70 publ i c void run ()

/ / here we s t a r t wi th the c a l u c l a t i o n s

1.13 Higher Mathematics in Java
1.13.1 Standard Mathematical Functions in Java
The standard mathematical functions of Java are declared in the java.lang.Math class, which consists of
static constants and methods for common mathematical manipulations. It contains the functions sine,
cosine, logarithm, exponential, square root and much more. Do not confuse this class with the java.Math
class, which was introduced to Java 1.1 for arbitrary precision arithmetic – we are not discussing this, read
the API documentation for details.

Java math is always conforming to the IEEE 754 standard and all algorithms used in the math API are
guaranteed to produce the same results as those from netlib’s Freely Distributable Math Library 6. fdlibm
is a C library for machines supporting the IEEE 754 floating point artihmetic initially developed by SUN.
Meanwhile Visual Numerics has developed a package implementing the full fdlibm library in pure Java.
Therefore Java need no longer depend on a local implemntation of the fdlibm library. This makes it
much easier to implement Java for more exotic computers or machines.

Some useful constant in the Math class are Math.Pi (") and Math.E (e). In Table 1.4 we have
summarized some of the most useful methods in the Math class. Note, that all angles are in radians and all
parameters and return values are of type double unless otherwise stated.

These are all class methods, so they can be called from anywhere. Here are some examples:

a=Math.exp(2.1); // e to the 2.1
distance = Math.sqrt(

Math.pow(x,2)+Math.pow(y,2)); // Euclidean distance

There is no import statement to avoid the Math in front of the methods, we always have to use it, although
it seems tedious.

Here is a test program for the three rounding methods available:

publ i c c l a s s Tes t Round ings
publ i c s t a t i c void main (S t r i n g [] a rgs)

double a1 =7 .49 ;
double b1 = 7 . 5 ;

5 double c1 =7 .51 ;

double a2 = 7.49;

6Called fdlibm. Netlib is a collection of mathematical software, papers and databases. It is located at the ORNL (Oak Ridge
National Lab in Tennessee) and UTK (University of Tennessee at Knoxville), but there are many other mirror sites. Fdlibm is available
online from http://www.netlib.org/ or http://www.hensa.ac.uk/ftp/mirrors/netlib/

60 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Table 1.4 Overview of the mathematical methods available in Java 1.1 in the java.lang.Math class.
abs(x) absolute value
acos(x)/asin(x)/atan(x) arcus cosine/sine/tangent
atan2(x,y) arctangent (x/y)
sin(x)/cos(x)/tan(x) sine/cosine/tangent
exp(x) / log(x) exponential and natural logarithm
ceil(x) smallest whole number x
floor(x) largest whole number x
rint(x) x rounded to the nearest integer;

if neither integer is nearer, rounds to the even one.
round(x) (int) floor (x+0.5) for float x

(long) floor(x+0.5) for double x
pow(x,y) yx

min(x,y)/max(x,y) minimum (maximum) of x and y for any numeric type
sqrt(x) square root of a double x
random() random numbers (use java.util.Random class)
IEEEremainder(x) special remainder function

New in Java 2:
toRadians(angle) converts degrees to radians
toDegrees(rad) converts radians to degrees

double b2 = 7.5;
double c2 = 7.51;

10
System . out . p r i n t l n ("round: "+Math . round (a1)+ " "+a1) ;
System . out . p r i n t l n ("round: "+Math . round (a2)+ " "+a2) ;
System . out . p r i n t l n ("round: "+Math . round (b1)+ " "+b1) ;
System . out . p r i n t l n ("round: "+Math . round (b2)+ " "+b2) ;

15 System . out . p r i n t l n ("round: "+Math . round (c1)+ " "+c1) ;
System . out . p r i n t l n ("round: "+Math . round (c2)+ " "+c2) ;

System . out . p r i n t l n ("ceil: "+Math . c e i l (a1)+" "+a1) ;
System . out . p r i n t l n ("ceil: "+Math . c e i l (a2)+" "+a2) ;

20 System . out . p r i n t l n ("ceil: "+Math . c e i l (b1)+" "+b1) ;
System . out . p r i n t l n ("ceil: "+Math . c e i l (b2)+" "+b2) ;
System . out . p r i n t l n ("ceil: "+Math . c e i l (c1)+" "+c1) ;
System . out . p r i n t l n ("ceil: "+Math . c e i l (c2)+" "+c2) ;

25 System . out . p r i n t l n ("floor: "+Math . f l o o r (a1)+ " "+a1) ;
System . out . p r i n t l n ("floor: "+Math . f l o o r (a2)+ " "+a2) ;
System . out . p r i n t l n ("floor: "+Math . f l o o r (b1)+ " "+b1) ;
System . out . p r i n t l n ("floor: "+Math . f l o o r (b2)+ " "+b2) ;
System . out . p r i n t l n ("floor: "+Math . f l o o r (c1)+ " "+c1) ;

30 System . out . p r i n t l n ("floor: "+Math . f l o o r (c2)+ " "+c2) ;

System . out . p r i n t l n ("rint: "+Math . r i n t (a1)+" "+a1) ;
System . out . p r i n t l n ("rint: "+Math . r i n t (a2)+" "+a2) ;
System . out . p r i n t l n ("rint: "+Math . r i n t (b1)+" "+b1) ;

35 System . out . p r i n t l n ("rint: "+Math . r i n t (b2)+" "+b2) ;
System . out . p r i n t l n ("rint: "+Math . r i n t (c1)+" "+c1) ;
System . out . p r i n t l n ("rint: "+Math . r i n t (c2)+" "+c2) ;

and the output of this program is:

begin ve rba t im
round : 7 7 . 4 9 f l o o r : 7 . 0 7 . 4 9
round : 7 7 . f l o o r : 8 . 0 7 . 4 9 4 9
round : 8 7 . 5 f l o o r : 7 . 0 7 . 5

5 round : 7 7 . f l o o r : 8 . 0 7 . 5 5
round : 8 7 . 5 1 f l o o r : 7 . 0 7 . 5 1
round : 8 7 . f l o o r : 8 . 0 7 . 5 1 5 1
c e i l : 8 . 0 7 . 4 r i n t : 7 . 0 7 . 4 9 9

1.13. HIGHER MATHEMATICS IN JAVA 61

c e i l : 7 .0 7 r i n t : 7 . 0 7 . 4 9 . 4 9
10 c e i l : 8 . 0 7 . 5 r i n t : 8 . 0 7 . 5

c e i l : 7 .0 7 r i n t : 8 . 0 7 . 5 .5
c e i l : 8 . 0 7 . 5 r i n t : 8 . 0 7 . 5 1 1
c e i l : 7 .0 7 r i n t : 8 . 0 7 . 5 1 . 5 1

end verba t im

For most of our simulations, we will need routines (methods) to calculate the mean, variance or other
statistical measures of a times series for example. Unfortunately these easy and important methods are not
part of the standard Java language. Solutions to overcome this problem are presented in the next sections.

1.13.2 Numerical Libraries - The JNL
The JNL (Java Numerical Library) was designed and implemented by Visual Numerics 7. It is a free li-
brary, which supplies additional mathematical functions, complex numbers, statistical operations and some
basic vector and matrix operations for scientists (no sparse matrix support), which are missing in the Java
standard. They have proposed it as a standard for the next version of Java.

The algorithms used for the JNL are based on the LinPack library 8, which are a collection of programs
for linear algebra in C and Fortran.

A short list of some of the functions included in the JNL is given in Table 1.5.

7A well known software company, selling the IMSL math library, PVWave a sophisticated plotting program and much more.
Visual Numerics Homepage

8See for example at the NetLib repository.

62 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

Ta
bl

e
1.

5
A

sh
or

tl
ist

of
JN

L
cl

as
se

ss
up

pl
ie

d
w

ith
JN

L
1.

0
re

vi
sio

n
ff

or
th

e
ne

w
JD

K
1.

2.
Th

er
e

ar
e

tw
o

1.
0f

ve
rs

io
ns

ar
ou

nd
,o

ne
w

hi
ch

w
or

ks
w

ith
bo

th
Ja

va
1.

1
an

d
Ja

va
2

an
d

on
e

w
hi

ch
ha

ss
om

e
tro

ub
le

w
ith

Ja
va

2.
C

la
ss

ex
am

pl
e

m
et

ho
ds

pu
rp

os
e

SF
un

Sp
ec

ia
lF

un
ct

io
ns

p
u
b
l
i
c
s
t
a
t
i
c
d
o
u
b
l
e
s
i
n
h
(
d
o
u
b
l
e
x
)

hy
pe

rb
ol

ic
sin

e
fu

nc
tio

n
p
u
b
l
i
c
s
t
a
t
i
c
d
o
u
b
l
e
g
a
m
m
a
(
d
o
u
b
l
e
x
)

th
e

ga
m

m
af

un
ct

io
n

p
u
b
l
i
c
s
t
a
t
i
c
d
o
u
b
l
e
e
r
f
(
d
o
u
b
l
e
x
)

th
e

er
ro

rf
un

ct
io

n
St

at
ist

ic
s

St
at

ist
ic

al
fu

nc
tio

ns
p
u
b
l
i
c
s
t
a
t
i
c
d
o
u
b
l
e
a
v
e
r
a
g
e
(
d
o
u
b
l
e
[
]
x
)

th
e

sa
m

pl
e

m
ea

n
p
u
b
l
i
c
s
t
a
t
i
c
d
o
u
b
l
e
n
o
r
m
a
l
C
D
F
(
d
o
u
b
l
e
x
)

cu
m

m
ul

at
iv

en
or

m
al

di
str

ib
ut

io
n

fu
nc

tio
n

p
u
b
l
i
c
s
t
a
t
i
c
d
o
u
b
l
e
[
]
l
i
n
e
a
r
F
i
t
(
d
o
u
b
l
e
[
]
x
,

d
o
u
b
l
e
[
]
y
)

lin
ea

rl
ea

st
sq

ua
re

es
tim

at
or

Co
m

pl
ex

fo
rh

an
dl

in
g

co
m

pl
ex

nu
m

be
rs

D
ou

bl
eV

ec
to

r
us

in
g

ve
ct

or
op

er
at

io
ns

on
ar

ra
ys

of
ty

pe
do

ub
le

Co
m

pl
ex

Ve
ct

or
th

e
sa

m
e

fo
rc

om
pl

ex
ve

ct
or

s
D

ou
bl

eM
at

rix
us

in
g

m
at

rix
op

er
at

io
ns

on
2D

ar
ra

ys
of

ty
pe

do
ub

le
Co

m
pl

ex
M

at
rix

th
e

sa
m

e
fo

rc
om

pl
ex

m
at

ric
es

1.13. HIGHER MATHEMATICS IN JAVA 63

Eight more classes (four for double and four for complex) for matrices are provided, which perform
matrix decompositions, like Cholesky, LU, QR and SVD decompositions. They can be used for an efficient
solution to linear systems of equations.

For a complete list of supplied functions, please consult the online documentation coming with the JNL
package.

Complex numbers This part of the JNL deserves a seperate discussion. We will not need complex
numbers in most parts of the book, but for example when we discuss quantum mechanical problems, we
have to come back to treating complex numbers in Java.

Because complex numbers are not a primitive data type in Java (yet), and there is no operator overload-
ing like in C++ for example, we can not write a+b, if a and b are complex numbers. We have to create
a new object called Complex and define methods to work with these objects. This is exactly the solution
followed by the JNL, so we do not need to do it again.

To instantiate complex numbers issue

import VisualNumerics.math.*;
......
Complex c1 = new Complex(1,2); // means c1 = 1+2i
Complex c2 = new Complex(2); // means c2 = 2
System.out.println(c1); // gives 1+2i on screen
......

By the way you can change the output character for the complex uniti by using Complex.suffix="j";
for example.

To add two complex numbers use one of the two possible methods:

Complex cresult1 = Complex.add(c1,c2);
Complex cresult2 = c1.add(c2);

The first version is the static method and the second one is the instance method of the class Complex. There
are analogous static methods for Complex.subtract(c1,c2), Complex.divide(c1,c2) and
Complex.multiply(c1,c2) and of course the same with instance methods.

You can extract real and imaginary part from a complex number easily by using

Complex c1 = new Complex(2,5);
System.out.println(" Real part: "+c1.re);
System.out.println(" Imaginary part: "+c1.im);

An overview of the most important methods is given in Table 1.6.

Table 1.6 An overview of the most important methods supplied by the Complex class of the JNL. z repre-
sents a complex number (Complex z;).

Complex.abs(z) absolute value
Complex.argument(z) the argument of the complex number z
Complex.conjugate(z) conjugate of z
Complex.sqrt(z) the square root of z
Complex.pow(z1,z2) the power of z1 to the z2
Complex.pow(z,d) the power of z to the (double) d
Complex.exp(z) the natural exponential of z
Complex.sin(z) the sine of z

1.13.3 The JSci/JavaSci Package
The JavaSci package has been developed at the Imperial College of Science, Technology and Medicine in
the UK. It is a freely available scientific package and its objective is:

64 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

“JavaSci aims to encapsulate scientific principles and ideas in a way that is representative of
their underlying structure and usage.”

The package consists of basically two types of classes: representation classes and library classes. The
representation classes are instaniateable and represent some physical or mathematical structure, whereas
the library classes are not to be instantiated and are used to manipulate the representation classes.

The JSci package is split into a chemistry, a physics and a maths subclass. Then there are
many convenience classes and some interesting other classes. The best way to learn the package is to study
the API documentation. In Table 1.7 we give a short overview of interesting classes and methods in the
JavaSci package used throughout the book.

1.13. HIGHER MATHEMATICS IN JAVA 65

Ta
bl

e
1.

7
So

m
e

of
th

e
in

te
re

sti
ng

cl
as

se
sa

nd
m

et
ho

ds
in

th
e

JS
ci

/Ja
va

Sc
ip

ac
ka

ge
.

J
S
c
i
.
c
h
e
m
i
s
t
r
y
.
A
t
o
m

U
se

d
to

co
ns

tru
ct

an
d

sto
re

an
at

om
w

ith
al

lt
he

da
ta

ne
ce

ss
ar

y.
J
S
c
i
.
c
h
e
m
i
s
t
r
y
.
E
l
e
m
e
n
t

U
se

d
to

co
ns

tru
ct

an
d

sto
re

an
el

em
en

tw
ith

al
lt

he
da

ta
ne

ce
ss

ar
y.

J
S
c
i
.
c
h
e
m
i
s
t
r
y
.
M
o
l
e
c
u
l
e

U
se

d
to

co
ns

tru
ct

an
d

sto
re

a
m

ol
ec

ul
e

w
ith

al
lt

he
da

ta
ne

ce
ss

ar
y.

J
S
c
i
.
c
h
e
m
i
s
t
r
y
.
p
e
r
i
o
d
i
c
t
a
b
l
e
.
T
r
a
n
s
i
t
i
o
n
M
e
t
a
l

Th
e

fu
ll

pe
rio

di
c

ta
bl

e
w

ith
al

ld
at

a
J
S
c
i
.
m
a
t
h
s
.
M
a
p
p
i
n
g

A
n

in
te

rfa
ce

to
de
fin

e
1D

co
m

pl
ex

or
re

al
fu

nc
tio

ns
.

J
S
c
i
.
m
a
t
h
s
.
N
M
a
p
p
i
n
g

A
n

in
te

rfa
ce

to
de
fin

e
N

di
m

en
sio

na
lc

om
pl

ex
or

re
al

fu
nc

tio
ns

.
J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h

A
ll

ki
nd

so
fa

rra
y

m
et

ho
ds

to
m

ak
e

lif
e

ea
sie

r.
M

an
y

m
or

e
as

in
th

e
Ja

va
2

ar
ra

y
cl

as
s.

J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h
.
c
o
r
r
e
l
a
t
i
o
n
(
)

Co
m

pu
te

th
e

(li
ne

ar
)c

or
re

la
tio

n
be

tw
ee

n
tw

o
ar

ra
ys

.
J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h
.
n
o
r
m
(
)

Co
m

pu
te

th
e

L2
no

rm
of

an
ar

ra
y

(E
uc

lid
ea

n
no

rm
or

le
ng

th
).

J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h
.
n
o
r
m
a
l
i
z
e
(
)

N
or

m
al

iz
e

th
e

ar
ra

y
so

th
at

its
L2

no
rm

is
1

(u
p

to
co

m
pu

ta
tio

na
le

rro
rs

).
J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h
.
p
r
i
n
t
(
)

Pr
in

ta
1D

or
2D

ar
ra

y
to

th
e

sc
re

en
J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h
.
s
u
m
S
q
u
a
r
e
s
(
)

Su
m

th
e

sq
ua

re
so

fa
ll

co
m

po
ne

nt
s;

al
so

ca
lle

d
th

e
en

er
gy

of
th

e
ar

ra
y.

J
S
c
i
.
m
a
t
h
s
.
A
r
r
a
y
M
a
t
h
.
t
o
S
t
r
i
n
g
(
)

Re
tu

rn
sa

co
m

m
a

de
lim

ite
d

str
in

g
re

pr
es

en
tin

g
th

e
va

lu
e

of
th

e
ar

ra
y.

J
S
c
i
.
m
a
t
h
s
.
F
o
u
r
i
e
r
M
a
t
h

M
et

ho
ds

fo
r1

D
re

al
or

co
m

pl
ex

FF
Ts

.
J
S
c
i
.
m
a
t
h
s
.
F
o
u
r
i
e
r
M
a
t
h
.
t
r
a
n
s
f
o
r
m
(
)

A
1D

co
m

pl
ex

or
do

ub
le

fa
st

Fo
ur

ie
rt

ra
ns

fo
rm

at
io

n.
J
S
c
i
.
m
a
t
h
s
.
L
i
n
e
a
r
M
a
t
h

Ei
ge

nv
al

ue
s,

ei
ge

nv
ec

to
rs

,l
in

ea
rl

ea
st

sq
ua

re
sa

nd
so

lv
in

g
lin

ea
rs

ys
te

m
s.

J
S
c
i
.
m
a
t
h
s
.
N
u
m
e
r
i
c
a
l
M
a
t
h

N
um

er
ic

al
di

ffe
re

nt
ita

tio
n,

in
te

gr
at

io
n,

O
D

Es
,M

et
ro

po
lis

al
go

rit
hm

J
S
c
i
.
m
a
t
h
s
.
N
u
m
e
r
i
c
a
l
M
a
t
h
.
r
u
n
g
e
K
u
t
t
a
(
)

U
se

st
he

Ru
ng

e-
K

ut
ta

m
et

ho
d

to
so

lv
e

an
O

D
E.

J
S
c
i
.
m
a
t
h
s
.
W
a
v
e
l
e
t
M
a
t
h

A
ll

ki
nd

so
fm

et
ho

ds
fo

rw
av

el
et

s.
J
S
c
i
.
m
a
t
h
s
.
s
t
a
t
i
s
t
i
c
s

A
cl

as
sw

ith
m

an
y

im
po

rta
nt

co
m

pl
ic

at
ed

di
str

ib
ut

io
ns

(B
et

a,
G

am
m

a,
T,

Ch
iS

qu
ar

ed
,e

tc
.)

J
S
c
i
.
p
h
y
s
i
c
s
.
P
h
y
s
i
c
a
l
C
o
n
s
t
a
n
t
s

A
ll

ph
ys

ic
al

co
ns

ta
nt

sy
ou

ca
n

th
in

k
of

.
J
S
c
i
.
p
h
y
s
i
c
s
.
q
u
a
n
t
u
m
.
K
e
t
V
e
c
t
o
r

Cr
ea

tin
g

ve
ct

or
sf

or
w

ua
nt

um
m

ec
ha

ni
cs

.
J
S
c
i
.
p
h
y
s
i
c
s
.
q
u
a
n
t
u
m
.
D
e
n
s
i
t
y
M
a
t
r
i
x

Ca
lc

ul
at

e
th

e
de

ns
ity

m
at

rix
.

J
S
c
i
.
u
t
i
l
.
M
a
t
r
i
x
T
o
o
l
k
i
t

M
et

ho
ds

to
cr

ea
te

ra
nd

om
m

at
ric

es
an

d
so

m
e

co
nv

er
sio

ns
.

J
S
c
i
.
i
o

Re
ad

in
g/

W
rit

in
g

te
xt
fil

es
an

d
w

rit
in

g
M

at
hM

L
(X

M
L)
fil

es
.

J
S
c
i
.
a
w
t

G
ra

ph
ic

al
ro

ut
in

es
lik

e
pl

ot
tin

g
fo

rt
he

AW
T.

J
S
c
i
.
a
w
t
.
B
a
r
G
r
a
p
h
(
)

A
ba

rg
ra

ph
AW

T
co

m
po

ne
nt

.
J
S
c
i
.
a
w
t
.
C
o
n
t
o
u
r
P
l
o
t
(
)

A
co

nt
ou

rp
lo

tA
W

T
co

m
po

ne
nt

.
J
S
c
i
.
a
w
t
.
L
i
n
e
G
r
a
p
h
(
)

A
2D

lin
e

gr
ap

h
AW

T
co

m
po

ne
nt

.
J
S
c
i
.
a
w
t
.
L
i
n
e
G
r
a
p
h
3
D
(
)

A
3D

lin
e

gr
ap

h
AW

T
co

m
po

ne
nt

.
J
S
c
i
.
a
w
t
.
P
i
e
C
h
a
r
t
(
)

A
pi

e
ch

ar
tA

W
T

co
m

po
ne

nt
.

J
S
c
i
.
a
w
t
.
S
c
a
t
t
e
r
G
r
a
p
h
(
)

A
sc

at
te

rG
ra

ph
AW

T
co

m
po

ne
nt

.
J
S
c
i
.
s
w
i
n
g

Th
e

sa
m

e
fo

rt
he

sw
in

g
pa

ck
ag

e.

66 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

The JSci.maths.ArrayMath class also contains methods for calculating the mean, variance, stan-
dard deviation, etc. like the JNL. The JSci.maths package contains many methods and classes for han-
dling matrices either integer, double, complex, sparse or diagonal and more. It has methods for handling
vectors in all flavours. And it even provides functionallity for discrete sets and the construction of the
Karhunen-Loeve expansion. There are complex numbers, special functions like hyperbolic ones and in
the SpecialMath math class there are even more like the Bessel functions, Airy functions, incomplete
Gamma and Beta functions, etc. Another class can handle symmetry groups, one handles chaotic maps and
almost everything you wish about wavelets in many different classes.

In the JSci.physics class you get methods and classes to use particles. There is a whole class just
defining all kinds of particles known to physicists today. Then you can use the JSci.physics.quantum
class to do quantum mechanics caluclations easily or you could use the JSci.physics.relativity
class to do relativistic calculations.

Since version 0.82 there is the IBM MathML package included to write XML/MathML files from Java.
That is the reason why now there is a limitation in the use of the whole package. So go ahead and read the
license agreement in the online documentation or at the homepage ofJSci.

In our opinion, using the JNL is preferred. Only for methods not contained in this package use the JSci
package like for FFTs or for solving ODEs for example. JSci is still in the development stage and it takes
some more time to be the package of choice for most of the tasks.

1.13.4 JNT, Lapack for Java - JamPack and Jama

????

JNT

Lapack

1.14 Debugging in Java

????

1.15 Advanced Java Features

In this chapter we shortly discuss and present some advanced features, which are of interest to some scien-
tists, but are not essential for finishing this book. But nevertheless some topics deserve to be mentioned for
self study. Still we are missing Java features such as graphical interfaces, plotting, parallel execution, file
reading and writing and more. These are the contents of the rest of the book and are always contained in
the context of a new simulation technique.

Including Native Code (C and C++)

To include native code into a Java program, there is the so-called JNI (Java Native Interface). This allows
for inclusion of native C or C++ codes. To refer to such a method, you just use

...
native CFunction();

The code for the method has to be implemented in C or C++.
At the moment there is no direct interface to other languages like Fortran. If you want to include Fortran

code you have to use a C wrapper code and then use the JNI with that C wrapper code for inclusion to Java.

1.16. ONLINE REFERENCES 67

Vectors

For a scientists there is a confusing class called java.util.Vectors, which has nothing to do with
mathematical vectors. This class realizes an array of objects, which can have a variable length. For example
you can store names of persons in an vector and add or delete them as you like without taking care of the
number and the access.

An interesting usage for this class is an array, which does not have a fixed size. Using the Vector class
you can easily build a class handling a flexible size array. For details of the class please refer to the API
documentation.

Stack

There is also a class java.util.Stack, which utilizes as the name suggests a stack. A stack is a kind
of pile, where you can put things on it and take them away, but only the last one put in. It is for example
used for many operating system tasks on a lower level. Again take a look at the API documentation for
details.

Hashtable

Another often occuring class of the java.util package is the hashtable class. It realizes a table with
associations between so-called keys and values, which has to be a one-to-one correspondence. So for
example you can store the name of a person and its age in a hashtable.

Serialization

One problem of objects is how to “save” objects to disk for example. Or sometimes you want to submit an
object to another applet or application using RMI accross networks, or you might want to store the object
for the next call of the same program (called persistence).

For all these reasons and many more, there is a method called serialization, which transforms an object
in a byte stream and back. To save an object to a file for later use, you could easily serialize the object and
store the byte stream to a file. Later on you reread the file and deserialize the byte stream back to an object.

If you create your own classes and want objects (instances of your class) to be serializable you have to
implement the serializable interface. We do not need this in the context of this book, but it is important to
know what is behind this.

Beans

Beans are classes, which conform to certain naming rules for the methods contained in a class. A bean gets
a graphical representation (an icon) and can be used in a separate program (often called the beanbox) to
create an application by just putting together different beans and changing the resources of the bean.

For example we can use a plot bean, which displays a plot (see ptplot later on). Then you can place
this plot bean on the screen and change the title, axes, etc. Then you can add a bean, which creates random
numbers and type in the size of the set. Then you can connect the two beans, which automatically sends
the data to the plot bean and plots it. This is called visual programming and is used in programs as IBM
Data Explorer or AVS/Express to write programs mostly including visual interfaces (GUIs).

You can for example write your own graphical beans and import them into one of the IDEs like Sim-
plicity or Netbeans. Then you can use your own bean to construct a nice GUI.

1.16 Online References
http://java.sun.com/ is the homepage of Java from SUN. A good starting point.

http://www.javasoft.com/

??????

68 CHAPTER 1. OBJECT ORIENTED PROGRAMMING

1.17 Exercises
EXERCISE 1.1 Computation of Pi using Hit and Miss Algorithm

Write a Java program to estimate the number " 3 1415 using the following algorithm:

Choose two random numbers r1 and r2 between 0 and 1. The two random numbers define a point in
a 2D square of length 1.

Check if the distance of the random point is inside a circle of radius 1. e.g. check if r 2
1 r2

2 1.
Count these points in a variable called for example inside.

Repeat this until you have created and checkd N points.

Compute 4 inside N, which is an approximation of ".

This is the algorithm for the “Hit and Miss” algorithm, which we will discuss in a later chapter in detail.
Run this program with several different values of N and plot the accuracy, the absolute difference

between the exact " and the estimation, versus the number of random points used.

EXERCISE 1.2 Compute Euler Constant e using a Darts Board

Bibliography

Arnold, Ken und Gosling, James. The Java Programming Language. The Java Series. Addison-Wesley,
xxxxxx, zweite Auflage, 1997.

Flanagan, David. Java Examples in a Nutshell. O’Reilly, 1977.

Flanagan, David. Java in a Nutshell. O’Reilly, zweite Auflage, 1997.

Rose, Charlton D. Lava Rocks Package. http://sharkysoft.com/software/lava/, 1999. his nickname is
Sharky.

69

70 BIBLIOGRAPHY

Chapter 2

Plotting with Java

Among the numerical techniques available to computational physics, stochastic methods, also called Monte
Carlo methods, play a central role. They are particularly appealing because of their immediacy, their power
and the breadth of applications. Of course, in order to profit from the advantages of such techniques it
is necessary to visualize the results of the simulations. It is the aim of this chapter to introduce into the
graphical analysis of data with Java.

Our approach will be hands on. We will start by presenting the prototype of a stochastic simulation
algorithm: the simulation of radioactive decay. As we already know, Monte Carlo methods rely upon the
use of random numbers. The radioactive decay is a physical system in which random events arise naturally.
Further on, we will learn that the sampling of random numbers offers an efficient numerical method to
compute multidimensional integrals.

The main part of the chapter is devoted to the graphical analysis of the data of the simulation of radioac-
tive decay. We will begin by introducing the foundations of graphical tools of Java. Then, we proceed with
the presentation of some more comfortable graphical capabilities which are freely available on the Internet
and with the discussion of some more advanced topics. All the tools will be applied to the simulation of
the radioactive decay.

2.1 The Radioactive Decay
As an example of a natural stochastic process we consider radioactive decay. Many heavy nuclei are in-
trinsically unstable and decay to lighter, more stable elements under the emission of +–, *–, or &–radiation.
The radioactive decay is a statistical process. One can not forsee at what time the next nucleus will decay.
According to the radioactive decay law one can predict the mean number of nuclei, which will decay in
a given time interval. Let us denote by $ the decay constant, i.e., the fraction of given nuclei decaying
per second. Then the average number of decays occurring between time t and time t dt is given by the
relation

dn $ndt (2.1)

The quantity dn dt is called the activity. Its dimension is the Becquerel (1Bq = 1s 1). To give an example,
the activity of 1g of Radium 226

88 Ra is approximately equal to 3 7 1010 Bq (In an older notation the same
activity was named 1 Curie). , 1 $ is the mean life time, during which the number of radioactive nuclei
drops to 1 e.

If at time t 0 we have n0 nuclei, it follows from Eq. (2.1) that at the later time t 0 we are left with

n t n0 exp $t (2.2)

nuclei. The half–life t1 2 is easily evaluated from the condition

n t1 2
n0
2

(2.3)

71

72 CHAPTER 2. PLOTTING WITH JAVA

to be

t1 2
ln2
$

(2.4)

It is important to remark that for each nucleus regardless of the decay mode $ and , are characteristic
constants which do not depend upon, e.g., the temperature, the pressure, or chemical reactions.

Let us now turn our attention to the stochastic description of radioactive decay from which we will
derive a stochastic algorithm. As we have already noticed a basic ingredient of all Monte Carlo recipes
is the use of random numbers. Thus, we have to know how to draw random numbers in our computer
program. At the moment it is not important for us to understand how this works using a computer. We only
have to know how to access them for now and this will be the subject of Chapter 2.1.1.

We only have to know that almost all programming languages have a random number generator in form
of some function in their mathematical library. Shortly we will see how this can be achieved in Java.

Let us assume that the system is made of N0 unstable nuclei. The probability p for a nucleus to decay
in the finite time interval %t is obviously given by

p $%t for $%t 1 (2.5)

Therefore it is easy to decide whether a nucleus decays with probability p or not. To do so we have to draw
a random number R uniformly distributed in the interval 0 1 . This random number lies with probability p
in the interval 0 p%t . Therefore, if R p%t a decay takes place, otherwise it does not. Hence in each time
step %t we have to decide between two cases: a) If a decay takes place we put N N 1 and t t %t;
b) If no decay takes place we set simply t t %t.

Thus, schematically the stochastic algorithm to simulate the radioactive decay reads

For t=0 to t with step dt
For each remaining nucleus

Decide if the nucleus decays
if (random number < p dt) then

N ---> N-1
end

end loop over nuclei
end loop over time

Before writing a program in Java to simulate the radioactive decay, let us briefly discuss the generation
of random numbers in Java.

2.1.1 Random Numbers in Java
In the first two chapters we have already met different possible ways to generate random numbers in
Java. The first method random() we encountered was contained in the Math class of the java.lang
package. The method random() creates a single Random object the first time it is invoked and returns
pseudo-random numbers for that object for each subsequent call. A better way to generate random numbers
is provided by the java.util package, which contains several standard utilities interfaces and classes.
This second possibility is to be preferred since it offers more possibilities to control the generation of
random numbers. With the help of the constructor

public Random()

we can create a new Random object. As we will learn in the next Chapter the sequence of random
numbers begins with the so–called seed. The class Random automatically chooses a seed according
to the current time. If a specific seed is desired, this can be fixed with the help of the constructor
public Random(long seed). Furthermore, the methodpublic synchronized void set-
Seed(long seed) which can be invoked at any time resets the sequence of random numbers to start
from the given seed. Having instantiated the Random object a pseudo-random number uniformly dis-
tributed between 0.0 (inclusive) and 1.0 (exclusive) is returned by invoking the instance method

2.1. THE RADIOACTIVE DECAY 73

public double nextDouble()

Similarly, the method nextFloat may be invoked to generate uniformly distributed random numbers
of the float type. In later Chapters we will also need uniformly distributed integer valued random
numbers. Such pseudo-random numbers between Integer.MIN_VALUE and Integer.MAX_VALUE
can be generated in Java with the help of

public long nextInt()

Alternatively it is possible to invoke also the methodnextLong(), which generates discrete random num-
bers uniformly distributed between Long.MIN_VALUE and Long.MAX_VALUE. The simulation
package contains two methods to generate an integer valued random number between 0 and N: the nextInteger()
or nextInt() method of the Distribution class. In Java 2 there is already a method nextInt()
to produce an integer valued random number between 0 and N. So we can always use the nextInt()
method in Java 1.1 and 1.2. To switch from Java 1.1 to 1.2, we just have to change the creation of the
random number generator object from the simulation class to the java.util.Random class. For
later purposes, let us mention that the package java.util also contains a method

public synchronized double nextGaussian()

which returns a pseudo-random Gaussian–distributed double value with mean 0.0 and standard deviation
1.0.

Now we are in the position to write a Java code for the simulation of the radioactive decay.

2.1.2 The Simulation Code
The above algorithm written in Java is shown in the following listing.

import j ava . a p p l e t . Apple t ;
/ A s imp le R a d i o a c t i v e decay s i m u l a t i o n

wi th o u t p u t to the command l i n e /
publ i c c l a s s Radioac t iveDe ca y extends Apple t

5 p r i v a t e in t N 0 =1000;
p r i v a t e double t e n d =300;
p r i v a t e double d e c a y c o n s t =0 .02 ;
p r i v a t e double dt =1;
p r i v a t e double prob = d e c a y c o n s t d t ;

10 publ i c in t [] N simu , N exact ;
publ i c j ava . u t i l . Random rand = new j ava . u t i l . Random () ;

/ empty c o n s t r u c t o r /
void Radioac t iveDec a y ()

15
/ use a main method to use i t as a p p l i c a t i o n OR a p p l e t /
publ i c s t a t i c void main (S t r i n g [] a rgs)

Rad ioac t iveDe ca y decay = new Radioac t iveDe ca y () ;
decay . i n i t () ;

20

/ The a c t u a l program /
publ i c void i n i t ()

in t s t e p s , N save , N;
25 double jump ;

s t e p s =(in t) (t e n d / dt)+1 ;
N simu =new int [s t e p s] ;
N exact =new int [s t e p s] ;

30 N simu [0]= N 0 ;

74 CHAPTER 2. PLOTTING WITH JAVA

N exact [0]= N 0 ;

N save =N 0 ;
N=N 0 ;

35 for (in t t = 0 ; t s t e p s 1; t ++)
for (in t i = 0 ; i N save ; i ++)

jump =rand . nextDouble () ;
i f (jump prob) N ;

N save =N;
40 N simu [t +1]= N;

N exact [t +1]=(in t) (N 0 Math . exp (d e c a y c o n s t t)) ;

for (in t t = 0 ; t t e n d ; t ++)
System . out . p r i n t l n (" Time "+ t +" : "+N simu [t]+ " "+

45 N exact [t]+" :exact") ;

The program is straightforward. In line 5 to 10 the relevant variables are defined and initialized. The
main time loop starts is line 35 and the loop over all the nucleiis starts in line 36. In line 38 we check if
the nuclei is already decayed or not. In order to check the results we evaluate the exact solution in line 41.
Finally, we print the result of the simulation to the screen comparing the exact with the simulated solution.

The class RadioactiveDecay has been written in such a way that it can be run as an application as
well as an applet. The idea is to extend the Applet class and to define, as it is necessary for applications,
a main method. The actual algorithm is implemented in lines 33 to 41.

We are now in the position to perform a simulation. To this end we run the program with the following
parameters

N0 1000; $ 0 02s 1; %t 1s; t_end 300s

Running the program it is evident that the screen output is not particularly satisfactory to examine the
results of the simulation. Thus, we have reached the point where we feel the necessity to learn something
about the graphical possibilities of Java.

2.2 The Most Easy Plot – The AWT and Applet Packages
Before trying to plot the data generated with the program RadioactiveDecay we want to discuss the
most simple Java code which allows to plot some 2 dimensional data. With the help of this example we
will learn the foundations of the graphical tools of Java. The code we want to discuss is the PlotEasy
class which can be run as an applet or as an application.

/ a p p l e t code =” Plo tEasy . c l a s s ” width =400 h e i g h t =400
Run App le t / a p p l e t /

import j ava . a p p l e t . Apple t ;
import j ava . awt . ;

5
/ The e a s i s e s t way to p l o t a Chart in Java ,

use i t as App le t or as an a p p l i c a t i o n
There i s no way to s top the program or to c l o s e the window ,
you have to k i l l t he program . /

10 publ i c c l a s s Plo tEasy extends Apple t
publ i c s t a t i c void main (S t r i n g [] a rgs)

Apple t a = new Plo tEasy () ;
Frame f = new Frame ("Easy Plotting") ;
f . add ("Center" , a) ;

15 f . s e t S i z e (4 0 0 , 4 0 0) ;
f . show () ;

2.2. THE MOST EASY PLOT – THE AWT AND APPLET PACKAGES 75

a . i n i t () ;

20 / Here we d e f i n e the f u n c t i o n to be p l o t t e d /
double f (double x)

return (Math . cos (x /2)+ Math . s in (x / 7) + 2) g e t S i z e () . h e i g h t / 4 ;

/ Here we p l o t the f u n c t i o n
25 because we are us ing the a c t u a l s i z e of the canvas ,

the p l o t g e t s r e s i z e d each t ime you r e s i z e the window /
publ i c void p a i n t (Graph ics g)

for (in t x = 0 ; x g e t S i z e () . width ; x ++)
g . drawLine (x , (in t) f (x) , x +1 , (in t) f (x + 1)) ;

30

As we can see the code starts by importing packages. We already met the first one, thejava.applet.Applet
package in the applet version of the HelloWorld program. The java.applet package is a small pack-
age. It simply contains the Applet class, which is the superclass of all applets, i.e., in order to create our
own applet we have to create a subclass of this class and override (overload) some or all of its methods
(see chapter 0). The second package we have to import is the java.awt package, where awt stands for
the Abstract Windowing Toolkit. This is one of the biggest packages in Java 1.1 and includes all the nice
graphics capabilities of Java.1

Java programs look different on different systems, because they use the AWT, which is an abstract
class, just defining the necessary methods and fields to write programs using graphics functionallity. To
accomplish this, Java uses a so-called peer architecture, see Figure 2.1.

Native Platform
objects

Win 32 / Motif /
Mac / etc.

Peer Interfaces Java Components
e.g. Frame, Button

User Subclasses

Figure 2.1: The peer architecture of the AWT in Java.

In order to understand the deep relation between applets and the AWT it is instructive to look at Figure
2.2, which shows the inheritance hierarchies of the Applet class. In the Java AWT API only interfaces and
abstract methods are defined, the actual program code has to be implemented for each platform in native
code. The communication between the native and the AWT objects is realized using the peer interface. We
as programmers only have to understand how to use the AWT and do not have to care about the underlying
peer interface or even the native implementations. Someone who wants to write a virtual machine for Java
has to understand the peer architecture and implement all necessary native code for the AWT.

1The discussion is based on Java 1.1, but if we just prepend a capital J to all AWT class names, we can use the new Swing/Java 2
components. We also have to change the import command from import java.awt.*; to import javax.swing.*;. You
should not use both together in one program.

76 CHAPTER 2. PLOTTING WITH JAVA

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Panel

java.applet.Applet

Figure 2.2: This figure shows the inheritance hierarchy of the Applet class.

Applets inherit the drawing and event handling methods from the AWTComponents class. Component
is the superclass of all GUI components in the java.awt package. Many important methods you have to
use are defined in the Component class.

Thejava.awt.Container class implements a component that contains other components. Container
can not be instantiated directly. You always have to use one of its subclasses, such as Panel, Frame or
Dialog. Once a Container is created you can set its Layout Manager with setLayout() or add
components to it with add(). You can remove components with remove().

The java.awt.Panel class is a Container that is itself contained in a Container. It does not create a
separate window of its own. Applets are a subclass of Panel that is contained within a Web browser or an
applet viewer. Figure 2.2 shows the hierarchy relations of some (not all!) components and layouts classes
of the java.awt package.

An important class of the AWT package is the java.awt.Graphics class, which encapsulates most
of the graphics functionality of the Java API. But the Graphics class is an abstract class and does not have
a constructor (For abstract classes, see Chapter 1.5). So there is no way to instantiate a Graphics object
like new Graphics() (This syntax is WRONG! We can not use it!). To get a Graphics object we can
ask for one by calling the getGraphics() method of the Component class. This is only possible, if
the actual Component class does have a drawable graphic context, e.g. Canvas or Container objects.
It makes obviously no sense to have a drawing area for a Button object for example. More common
and most of the time easier is to override the paint() or update() methods of a Component object,
because both methods supply the Graphics object as an parameter to the method.

Now we have the necessary background to understand what is going on in the PlotEasy.java
program. The class PlotEasy extends the Applet class and has a main method. In the main method
we instantiate the Applet PlotEasy and the Frame f. The hierarchy of the Frame class is (see Fig.
2.2) Object Component Container Window Frame. The Frame class represents an optionally
resizable application window with a title bar.

With the help of the add(Component) method in the Container class, we can “add” arbitrary
components to our container. E.g. we can add a button or a label to the frame we have created, for
example:

Frame f = new Frame("Test Frame");
Button but = new Button("Test"});
....
f.add(but); // here we add the Button to the Frame

2.2. THE MOST EASY PLOT – THE AWT AND APPLET PACKAGES 77

java.lang.
object

FlowLayout

GridLayout

BorderLayout

Graphics

Component

Button

Label

Canvas

Container

Panel

ScrollPane

Window

Dialog

Frame

Figure 2.3: The hierarchy of the AWT package.

78 CHAPTER 2. PLOTTING WITH JAVA

....
f.show(); // finally we show the Frame on the screen

The resulting window is shown in figure 2.4.

Test

Test

Figure 2.4: The output of the most easy window with a button using the AWT.

A list of all AWT components defined in the Java 1.1 and 1.2 standard is shown in table 2.1.
The arrangement of the components, in Java called layout, and the containers for each container can be

defined by using a layout manager. By default it always uses the FlowLayoutmanager for an application,
which just puts the components beside each other in a line and if the window is too small it wraps them to
the next line. For an applet the default is the borderlayout manager.

More sophisticated layout managers are available in Java. All possible layout managers are given in
Table 2.2. Unfortunately it is a pretty difficult task to use some of the layout managers, but if the desired
layout for a program is not too complicated, it is enough to use the easy borderlayout, flowlayout and/or
gridlayout managers. If we need more complex layouts, we should use the Swing/JFC packages, which are
also available for Java 1.1 as mentioned in the introductory chapter. If we use an IDE like Simplicity for
Java or Netbeans, it is much easier to set up our own layouts and windows.

Let us look back at thePlotEasy.java program. With the help of the methodsetSize(int width, int height)
we fix the dimensions of the frame in pixels. Another useful method is the pack() method of the Frame
class, which sets the size of the frame to the size necessary to display all contained components of the frame.
The show()method displays the frame. As we already knowa.init() calls the init()method of the
Applet class and therefore starts the applet. There is also a method called setResizable(boolean)
for the Frame class, which decides if the window can be resized by the user or not.

In principle the part of the code we just described is not necessary. We included it only to allow the
program to be run as an application and as an applet. Try to run the code without the lines 8 to 15 as
an applet and it will still work, but it will no longer work as an application, because the main method is
missing.

The actual plotting is performed by the paint() method, which draws on the screen – to be precise:
in the panel of the Applet class. Applets typically override some of the methods of the Component class
of the java.awt package and you have to override at least the init() method, as we have already
learned. The simplest way for a Component to draw itself is to put drawing code in the paint() method.
In lines 24 to 27 we see a simple example of implementing the paint() method.

The Graphics class of the java.awt package defines methods for drawing different kinds of
shapes. The method which we use here is the

drawLine(int x1, int y1, int x2, int y2)

method, which simply draws a line with the current color in the Graphics object g. Other typical
methods are shown in table 2.3. There is no drawPoint() method as one might expect, but we can easily use
the drawLine() method with same starting and endpoint of course. Much more graphics capabilities
have been added by introducing the Java2D package into Java 2.

The methodgetsize().height and getSize().width, which we use in lines 19 and 25 return
the height and the width of the Frame or the panel of the applet. Now that we understand the code let us
run the program, either from the command line or using the appletviewer or netscape.

If we try to resize the window, we realize that the plot is drawn again and zoomed to the new win-
dow size. This is because we have not overloaded the update() method and the default behaviour
of the update() method is to call the paint() method again. In chapter 0 we have learned, that

2.2. THE MOST EASY PLOT – THE AWT AND APPLET PACKAGES 79

Table 2.1 A list of most of the defined AWT components of the Java 1.1 API and the Java2 API (Swing).
In Java2/Swing all the AWT Components are also available with Swing by just adding a capital J to the
beginning of the components (e.g. JButton instead of Button, JComponent instead of Component).

Component Usage
Button A button with text on it.
Canvas A drawing area.

Checkbox A list of clickable choices (more than one can be choosen at a
time).

CheckboxGroup A list of clickable choices (only one can be choosen at a time).
Choice A list of choices, like a pull-down menu.
Label A short text to be displayed in the GUI.
Menu Many components are available to realize menus.

Scrollbar Sometimes called a slider.
TextComponent.TextArea Multiple lines of text to be displayed or optionally editable.
TextComponent.TextField A line of text, optionally editable.

Container.Panel A “box” to contain other components.
Container.ScrollPane A container to hold large areas, which cannot be displayed and

have to be scrolled using the scroll panes.
Container.Window.Frame An optionally resizable window with title and decorations.
Container.Window.Dialog A dialog window to ask a question or display a notification.

Container.Window.FileDialog For choosing/browsing files/directories.
JRadioButton A special Button (only one can be selected).
JComboBox Special purpose component to accomplish long lists.

JList A group of items displayed in a column.
JSlider For entering numeric values, which are bounded.

JProgressBar Visible component to show how much of a job has been com-
pleted.

JColorChooser Choose from a color box.
JFileChooser Get a file or path from the user.

JTable Display a table of data.
JTree Display hierarchical data.

ToolTips For every component you can have a balloon help/tool tip.
Container.JToolBar Group several components (eg. Buttons) with icons.

Container.JSplitPane Two panels in one.
Container.JTabbedPane Sharing the same place by many panels, similar to carlayout.

Table 2.2 All possible layouts in the AWT package of Java 1.1.
Layout Manager how it works :

FlowLayout The default layout, everything beside each other.
GridLayout Put all components/container in a table structure.

BorderLayout Use a center and 4 borders to put the components/containers.
CardLayout Put components/containers like cards on a stack.

GridBagLayout A very versatile but complicated layout manager.
BoxLayout Components in a column, where the largest gives the width.

“Absolute Positions” New in Java 2, but it is better to use the others.

80 CHAPTER 2. PLOTTING WITH JAVA

Table 2.3 List of some of the methods contained in the Graphics class. All method arguments are of
type integer, unless otherwise stated. More methods are available in the much more powerful Java2D API
coming with Java2.

Method Purpose
drawLine(x1, y1, x2, y2) Draw a line or point.
drawRect(x, y, width, height) Draw a rectangle
fillRect(x, y, width, height) Draw a filled rectangle.
clearRect(x, y, width, height) Clear a rectangle area.
drawArc(x,y,width,height,Angle0,arc) Draw a part of a circle.
fillArc(x,y,width,height,Angle0,arc) Draw and fill the arc.
drawPolygon(int[] x, int[] y, nPoints) Draw a polygon with the

given points.
fillPolygon(int[] x, int[] y, nPoint) Same, but fills it with a

color.
copyArea(x, y, width, height, dx, dy) Copy an area by dx/dy.
drawString(String text, x,y) Draw text at the position.
translate(x,y) Translate the origin.

Component.update(Graphics g)

Component.repaint() / Component.repaint(long milliseconds)

Component.paint(Graphics g)

override these

call this

Figure 2.5: The default behaviour of the painting methods of components in the AWT package.

2.2. THE MOST EASY PLOT – THE AWT AND APPLET PACKAGES 81

the update() method is called everytime the window has to be redrawn, because of some events like
scrolling in the browser window or, like here, resizing the window (see Figure 2.5.).

Having learned the basic graphical tools of the AWT with the help of the most easy plot program, we
can now apply what we have just learned to the simulation of the radioactive decay.

/ a p p l e t code =” R a d i o a c t i v e D e c a y e a s y p l o t . c l a s s ” width =500 h e i g h t =400 Run App le t / a p p l e t /
import j ava . a p p l e t . Apple t ;
import j ava . awt . ;
import j ava . awt . even t . ;

5 / This i s a R a d i o a c t i v e decay s i m u l a t i o n us ing only Java 1 . 1 f e a t u r e s . /
publ i c c l a s s R a d i o a c t i v e D e c a y e a s y p l o t extends Apple t

p r i v a t e s t a t i c in t width =500, h e i g h t =400;

p r i v a t e in t N 0 =2000;
10 p r i v a t e double t e n d =400;

p r i v a t e double d e c a y c o n s t =0 .02 ;
p r i v a t e double dt =1;
p r i v a t e double prob = d e c a y c o n s t d t ;
publ i c in t [] N simu , N exact ;

15
/ The main method j u s t c a l l s the i n i t () method of the a p p l e t and

opens a window to hos t the p l o t s /
publ i c s t a t i c void main (S t r i n g [] a rgs)

Apple t a p p l e t = new R a d i o a c t i v e D e c a y e a s y p l o t () ;
20 Frame frame = new Frame ("Radioactice Decay") ;

frame . addWindowLis tener (new WindowAdapter ()
/ / Handle window c l o s e r e q u e s t s
publ i c void windowClosing (WindowEvent e)

System . e x i t (0) ;) ; / / e x i t from program ? !
25 frame . s e t S i z e (width , h e i g h t) ; / / s e t s i z e of window

frame . add ("Center" , a p p l e t) ; / / add a p p l e t to the window
frame . show () ; / / d i s p l a y window on screen
a p p l e t . i n i t () ; / / s t a r t a p p l e t

30
/ The a c t u a l program , s t a r t e d by the browser or by the main method /
publ i c void i n i t ()

in t s t e p s , N save , N;
double jump ;

35
s t e p s = (in t) (t e n d / dt)+1 ;
N simu =new int [s t e p s] ;
N exact =new int [s t e p s] ;
N simu [0]= N 0 ;

40 N exact [0]= N 0 ;

/ / Here the a c t u a l s i m u l a t i o n t a k e s p lace
N save =N 0 ;
N=N 0 ;

45 for (in t t = 0 ; t t e n d ; t ++)
for (in t i = 0 ; i N save ; i ++)

jump =Math . random () ;
i f (jump prob) N ;

N save =N;
50 N simu [t +1]= N;

N exact [t +1]=(in t) (N 0 Math . exp (d e c a y c o n s t t)) ;

82 CHAPTER 2. PLOTTING WITH JAVA

/ Here we p l o t the p o i n t s and r e p a i n t i t ,
55 i f t he window g e t s r e s i z e d . /

publ i c void p a i n t (Graph ics g)
in t x1 , x2 , y1 , y2 ;
double s c a l e x , s c a l e y ;

60 / / ge t the s i z e of the a v a i l a b l e canvas
in t width = t h i s . g e t S i z e () . width ;
in t h e i g h t = t h i s . g e t S i z e () . h e i g h t ;

/ / C a l c u l a t e s c a l i n g f a c t o r s to use the whole p l o t t i n g area
65 s c a l e x =(double) width / t e n d ;

s c a l e y =(double) h e i g h t / N 0 ;

/ / P lo t a l l t he p o i n t s w i t h o u t axes s c a l e i t
for (in t t = 1 ; t t e n d 1; t ++)

70 / / s i m u l a t i o n
y1 =(in t) (h e i g h t N simu [t 1] s c a l e y) ;
y2 =(in t) (h e i g h t N simu [t] s c a l e y) ;
x1 =(in t) ((t 1) s c a l e x) ; x2 =(in t) (t s c a l e x) ;
g . s e t C o l o r (Color . red) ;

75 g . drawLine (x1 , y1 , x2 , y2) ;
/ / e x a c t r e s u l t
y1 =(in t) (h e i g h t (double) N exact [t 1]/ N 0 h e i g h t) ;
y2 =(in t) (h e i g h t (double) N exact [t] / N 0 h e i g h t) ;
g . s e t C o l o r (Color . b l ack) ;

80 g . drawLine (x1 , y1 , x2 , y2) ;

Implementing the graphical facilities in the RadioactiveDecay.java code is easy. The output of
the new program can be seen in figure 2.6.

Radioactice Decay

Figure 2.6: The output of the easyplot version of the radioactive decay program. The exact solution is a black line, the
simulation a red line.

In the program code we immediately recognize in the lines 56 to 81 the paint() method. The results

2.3. PTPLOT – EXTENDING JAVAS GRAPHICS CAPABILITIES 83

of the simulation have to be scaled appropriately to fit in the Frame. The curve is plotted with the method
drawLine(). Since we want to plot also the exact analytical solution for the mean values in red we set

g.setcolor(Color.red)

in line 74 before drawing the corresponding curve.
It is important to note that in the lines 21 to 24 we have added the code

frame.addWindowListener(...);

which allows to handle the request to close the window. These “events” are in the java.awt.event
package and will be discussed later in chapter 8.5.

2.3 Ptplot – Extending Javas Graphics Capabilities
The quality of the plot of the simulation results are rather poor compared to high standards we are used to
today. It is clear, that we could now go on refining the plot with the help of the Java AWT. Although this
might be an interesting and instructive task, it is not our primary interest in this book. Fortunately, there
are advanced 2D graphics components which can be used in applets and applications.

One of these packages is Ptplot (you pronounce it pee–tee–plot). The Ptplot package is contained in a
large project called Ptolemy and is released under the liberal UC Berkley copyright. It has been developed
by Edward A. Lee, C. Hylands, and W. Wu. You are free to download it together with the full Ptolemy
package or as a stand alone package at http://ptolemy.eecs.berkeley.edu/java/ptolemy.plot2.0/ptolemy/plot
where you also find the documentation and many demos of Ptplot.

The components of Ptplot have the following properties:

plots are embeddable in applets and applications

you may use binary or ASCII data

the plots are auto–ranging

you may label automatically or manually the axes

logarithmic axes

live, animated plots

infinite zooming

various plot styles (connected lines, scatter plots, bars, ..)

various point styles (none, dots, points,)

multiple data sets and legends

color or black and white plots

error bars.

Before writing the first program using Ptplot take a look at the class hierarchy of Ptplot in Figure 2.7. The
most important classes are the Plot and the PlotBox classes.

Let us now look at a very simple program in order to demonstrate what we need to invoke the Ptplot
methods.

/ a p p l e t code =” Ptplot Demo1 . c l a s s ” width =400 h e i g h t =400 Run App le t / a p p l e t /

import j ava . a p p l e t . Apple t ;
import j ava . awt . ;

84 CHAPTER 2. PLOTTING WITH JAVA

Applet PlotApplet

Container Panel PlotBox Plot PlotLive

Figure 2.7: The class hierarchy of the Ptplot package.

5 import j ava . awt . even t . ;

import ptolemy . p l o t . ;

/ S imple c l a s s to show the use of PTPlot
10 I t j u s t d i s p l a y s an empty p l o t area wi th t i c k m a r k s /

publ i c c l a s s Ptplo t Demo1 extends P l o t A p p l e t
p r i v a t e s t a t i c in t width =400, h e i g h t =600 ; / / s i z e of window or a p p l e t

publ i c s t a t i c void main (S t r i n g [] a rgs)
15

Frame frame = new Frame ("Make Plots using PtPlot") ; / / c r e a t e frame
frame . addWindowLis tener (new WindowAdapter ()

/ / Handle window c l o s e r e q u e s t s
publ i c void windowClosing (WindowEvent e) System . e x i t (0) ;) ;

20 frame . s e t S i z e (width , h e i g h t) ; / / s e t s i z e of window

Apple t a p p l e t = new Ptplo t Demo1 () ; / / Create a panel fo r the a p p l e t
frame . add ("Center" , a p p l e t) ; / / add a p p l e t to the window
frame . show () ; / / d i s p l a y window on screen

25 a p p l e t . i n i t () ; / / s t a r t a p p l e t

/ The a c t u a l p l o t r o u t i n e /
publ i c void i n i t ()

30 / / Create a new Plo t
super . newPlot () ;
/ / i n i t i a l i z e the new p l o t
super . i n i t () ;
/ / s e t t i t l e o f p l o t

35 p l o t () . s e t T i t l e (" Test Plot") ; / / s e t p l o t t i t l e

First, we see that we have to import additionally the Ptplot package by using

import ptolemy.plot.*;

The class Ptplot_Demo1 extends the class PlotApplet. Again we want to run the code as an ap-
plet as well as an application so the class does have a main method. In lines 14 to 17 we instantiate the
new Frame and activate the WindowListener as we did in the RadioactiveDecay_ploteasy.java
code. The actual plot routines are in lines 28 to 33. In the init() method we invoke the method
super.newPlot() to create a new plot, super.init() to initialize it and plot().setTitle
to give the plot a title.

A second possibility of using Ptplot, which we prefer to use, is to extend the Applet class instead of
the PlotApplet class and change the lines 28 to 33 to:

/ / Create a new Plo t
P l o t p l o t = new P l o t () ;

2.3. PTPLOT – EXTENDING JAVAS GRAPHICS CAPABILITIES 85

30 / / i n i t i a l i z e the new p l o t
t h i s . add (p l o t) ;
/ / s e t t i t l e o f p l o t
p l o t . s e t T i t l e (" Test Plot") ; / / s e t p l o t t i t l e

The difference is that the PlotApplet class realizes a kind of interface for an applet to start plot
commands confirming to the pxgraph commands and executes them from parameters given in the HTML
file for the applet. Pxgraph is a program for the X windows system to plot data using batch files like
Gnuplot. The full Pxgraph functionality is included in the ptplot package and can be used. For further
documentation concerning this point, please refer to the ptplot documentation.

Next we want to draw the results of the simulation of the radioactive decay process with the help of
ptplot and learn at the same time how to exploit the features of ptplot. The corresponding code can be seen
below.

/ a p p l e t code =” R a d i o a c t i v e D e c a y p t p l o t . c l a s s ” width =500 h e i g h t =400
Run App le t / a p p l e t /

import j ava . a p p l e t . Apple t ;
import j ava . awt . ;

5 import j ava . awt . even t . ;
import ptolemy . p l o t . ;

publ i c c l a s s R a d i o a c t i v e D e c a y p t p l o t extends Apple t
p r i v a t e in t N 0 =1000 ; / / i n i t i a l number of par t .

10 p r i v a t e double t e n d =100 ; / / end t ime of s i m u l a t i o n
p r i v a t e double d e c a y c o n s t = 0 . 0 0 1 ; / / decay c o n s t a n t lambda
p r i v a t e double dt = 1 ; / / t ime i n c r e m e n t fo r sav ing
p r i v a t e double prob = d e c a y c o n s t d t ; / / decay p r o b a b i l i t y
publ i c in t [] N simu , N exact ; / / t he array for sav ing r e s u l t s

15 publ i c s t a t i c P l o t p l o t 1 ;

/ The main r o u t i n e for runn ing the program as an a p p l i c a t i o n /
publ i c s t a t i c void main (S t r i n g [] a rgs)

Apple t a p p l e t = new R a d i o a c t i v e D e c a y p t p l o t () ;
20 Frame frame = new Frame ("Radioactice Decay using PTPlot") ;

frame . addWindowLis tener (new WindowAdapter ()
/ / Handle window c l o s e r e q u e s t s
publ i c void windowClosing (WindowEvent e) System . e x i t (0) ;) ;

frame . add ("Center" , a p p l e t) ; / / add a p p l e t to the window
25 a p p l e t . i n i t () ; / / s t a r t a p p l e t

frame . pack () ;
frame . show () ; / / d i s p l a y window on screen

30 / The a c t u a l main program , s t a r t e d by a browser or by the main method
C a l c u l a t e a r a d i o a c t i v e decay and p l o t the r e s u l t i n g p o i n t s us ing
the PTPlot c l a s s e s . Compare wi th the e x a c t r e s u l t . /

publ i c void i n i t ()
in t s t e p s , N save , N;

35 double jump ;

s t e p s = (in t) (t e n d / dt)+1 ;
N simu =new int [s t e p s] ;
N exact =new int [s t e p s] ;

40 N exact [0]= N 0 ;
N simu [0]= N 0 ;
N save =N 0 ;
N=N 0 ;
/ / Advance : t ime s t e p s

86 CHAPTER 2. PLOTTING WITH JAVA

45 for (in t t = 0 ; t s t e p s 1; t ++)
/ / t r a n s i t i o n s u n t i l t he nex t measure p o i n t (d t i n t e r v a l s)
for (in t i = 0 ; i N save ; i ++)

jump =Math . random () ;
i f (jump prob) N ;

50 N save =N;
/ / save the number of p a r t i c l e s in an array
N simu [t +1]+=N;
N exact [t +1]=(in t) (N 0 Math . exp (d e c a y c o n s t t)) ;

55
/ / s t a r t a new p l o t and p l o t the p o i n t s
p l o t 1 = new P l o t () ;
add (p l o t 1) ;

60 in t t max =(in t) t e n d ;
/ / s e t the s i z e of the f o n t s for t i t l e and l a b e l s
p l o t 1 . s e t L a b e l F o n t ("Serif-bold-16") ;
p l o t 1 . s e t T i t l e F o n t ("Serif-bold-24") ;

65 p l o t 1 . s e t T i t l e ("Radioactive Decay") ; / / T i t l e o f p l o t
p l o t 1 . s e t M a r k s S t y l e ("none") ; / / do t s , p o i n t s or v a r i o u s
p l o t 1 . se tXLabe l ("time t") ; / / s e t the l a b e l s of the axes
p l o t 1 . se tYLabe l ("Number of Particles") ;
p l o t 1 . setXRange (0 , t max) ; / / s e t the x range

70 p l o t 1 . s e t G r i d (true) ; / / Grid or not ?
p l o t 1 . setYLog (f a l s e) ; / / l o g a r i t h m i s p l o t ?
p l o t 1 . s e t B a r s (f a l s e) ; / / shou ld I use bars ?
p l o t 1 . s e t B u t t o n s (true) ;

/ / Create the t i c k s for the a x i s
75 for (in t i = 0 ; i =t max ; i +=50)

p l o t 1 . addXTick (I n t e g e r . t o S t r i n g (i) , i) ;
for (in t i = 0 ; i =N 0 ; i +=(in t) (N 0 / 1 0))

p l o t 1 . addYTick (I n t e g e r . t o S t r i n g (i) , i) ;

80 / / p l o t the p o i n t s and connec t them
boolean connec t = f a l s e ;
for (in t t = 0 ; t s t e p s ; t ++)

p l o t 1 . addPo in t (0 , t , N simu [t] , connec t) ;
p l o t 1 . addPo in t (1 , t , N exact [t] , connec t) ;

85 i f (connec t == f a l s e) connec t = true ;

The output of the code can be seen in Fig. (2.8).
The actual plotting code starts in line 55 and ends in line 79. There we use several methods of

the ptplot.Plot class and of the superclass PlotBox of the Plot class. All methods are called
setMethodwhere Method is self-explaining. Several other methods are implemented in thePtplot.PlotBox
class and its child, the Ptplot.Plot class. They are summarized in table 2.4.

Although this is the most common way of using ptplot in this book, there is also the Pxgraph feature
coming with ptplot, mentioned above. For us it will be easier to use ptplot directly in the Java program to
realize plots.

2.4 Plot Methods in the Simulation Package
In the previous section we have seen how to plot the result of the simulation with the help of the ptplot
package. Here, we will present other features that we have added to the simulation package in order to

2.4. PLOT METHODS IN THE SIMULATION PACKAGE 87

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350

Radioactive Decay

time t

N
u
m
b
e
r

o
f

P
a
r
t
i
c
l
e
s

f i l l

Figure 2.8: The output of the RadioactiveDecay ptplot.java program.

88 CHAPTER 2. PLOTTING WITH JAVA

Table 2.4 Overview of all the Ptplot methods in the Plot and PlotBox classes.
Method Purpose
addLegend(int, String) draw a legend for one plot number
addXTick() add a tick to x-axis
addYTick() add a tick to y-axis
setBackground(Color) set the background color of plot
setForeground(Color) set the foreground color of plot
setGrid(boolean) draw a grid
setLabelFont(String) font for axis labels and legend labels
setTitle(String) title of graph
setTitleFont(String) set title font
setXLabel(String) label of x axis
setYLabel(String) label of y axis
setXLog(boolean) x axis logarithmic scaling
setYLog(boolean) y axis logarithmic scaling
setXRange(double, double) x range of the plot
setYRange(double, double) y range of the plot
addPoint(int, double, dou-
ble, boolean)

add a point to the plot, the boolean variable de-
cides, if the point gets connected with the last
one. The integer variable is the plot number.

addPointWithErrorBars(int,
double, double, dou-
ble, double, boolean)

add a point to the plot with errorbars. Th addi-
tional vars. specify the lower and higer y coor-
dinate of the error bar.

setBars(boolean) bar plotting on or off
setBars(double, double) define width and offset for bar plotting and en-

able bar plotting.
setImpulses(boolean) plot impulses
setMarksStyle(String) none, points or various

2.4. PLOT METHODS IN THE SIMULATION PACKAGE 89

make the plotting from inside a Java program easier.

plot2D() The plot2D() method has several different argument lists. The main purpose of the method
is to ease plotting of data contained in an array. If you have for example an array, which you want to plot
versus the index of the array, just issue

simulation.Plotting.plot2D(array);

This command creates a new frame and plots the data into this frame using ptplot. If you also want to
specify the x-coordinates, just use

simulation.Plotting.plot2D(arrayX,arrayY);

If we do not want a new frame, but want to add the points to an existing ptplot Plot object, we can use

simulation.Plotting.plot2D(plot,plotNo,arrayX,arrayY);

where plot is an object of type Plot and plotNo is an integer, referring to the ptplot dataset to be
used. We can avoid any unecessary arguments if we like. For details look at the simulation package
documentation.

barPlots() There is also a convenience method for plotting bargraphs with ptplot. To use a new frame
and plot a bargraph for given boundaries of the bars (points) and given heights of the bars, we can use

simulation.Plotting.barPlot(points, heights, barWidth);

The barWidth specifies the width of the bars to be drawn as a double value. Again there is another
version, which does not create a new frame, but uses an existing Plot object.

simulation.Plotting.barPlot(plot, plotNo, points, heights, barWidth);

errorBars() Plotting an errobar plot is very important for scientists. Fortunately ptplot contains functions
for errorbar plotting. We have only added again some convenience routines to make it easier. Ptplot is made
for assymmetric error bars, but mostly we are faced with symmetric error bars. So to avoid writing the same
lines over and over again, we can use

simulation.Plotting.errorBarPlot(x, y, yerr);

to plot arrays x and y containing data with a given symmetric error yerr in the y-coordinate into a new
Frame. For assymmetric error bars use

simulation.Plotting.errorBarPlot(x, y, yerrUp, yerrDown);

Again there are two more methods doing exactly the same, but do not create its own frame. And if we do
not specify the x-coordinates, the y array is plotted versus the index of the array.

Function Plotting Sometimes we want to plot analytical functions for comparisons. To that end we have
written a method, which takes a function as an argument and plots the function in a specified range. For
example, if we want to plot a sin x x function, we use

public class Test {
/** a function */
public double function(double x) {

if (x==0) {
return 1; }

else {
return Math.sin(x)/x; }

}

public static void main(String[] args) {
Test fct = new Test();
Plotting.plotFunction(fct,1000,-50,50);

}
}

90 CHAPTER 2. PLOTTING WITH JAVA

The x range is from 50 to 50 and the method uses 1000 points in this interval. If you just supply the
function, the method uses a default interval of 0 1 and 1000 points. If we want to specify a Plot object,
we have to specify it as the first argument to the method.

histogram() A last very important plotting feature needed very often is the plotting of a histogram to
estimate for example a probability distribution, as we will see later. Usually you have a data set and want
to sort the data according to its values. For example we have data measured from a thermometer giving
the temperature in your living room over the lat 12 months. Now we want to know how often did we have
between 15 and 16 degrees Celsius, how often between 16 and 17, and so on. For this we just have to count
the number of temperatures falling in between the given range. This is exactly what is called a histogram.

Because plotting a histogram is actually a two step process, we have to use a seperate class to get a
histogram plot. Assume we have a data set in a double array called array containing N numbers.

Computing the histogram is done in the Histogram class:

Histogram histo = new Histogram(array); // create a histogram
histo.estimate(); // compute the histogram from the data

Plotting or displaying the histogram can be done by using

histo.plotInFrame(); // plot the histogram
histo.print(); // display the histogram as numbers

The methods presented above compute the bins to be used by calculating the mean µ and the variance ' 2

of the data and choose 20 equal width bins accross the range µ 2' µ 2' . If we want to choose our
own bin positions and sizes we have to use one of the other methods supplied by the Histogram class.
For all the methods and fields available, please use the documentation of the simualtion package.

The Radioactive Decay In order to demonstrate the application of the simulation package features we
consider again the simulation of the radioactive decay.

Some results of simulations are plotted in Fig. (2.4) and (2.4).
As we already know from Fig. 2.4 the results of the simulationfluctuate around the expected curve. This

is of course not astonishing since the exact result holds only for mean values. In order to achieve a better
agreement with the decay law it is necessary to run the simulation several times and to take the average
over the different realizations of the decay process. This can easily be achieved by a simple modification
of the program RadioactiveDecay_ptplot.java. We introduce an additional input variable, the
number of realizations nreal and accordingly implement a loop over the different realizations. This can
be best seen in the listing of the new program RadioactiveDecay_ptplot2.java.

N exact =new int [s t e p s] ;
45 N exact [0]= N 0 ;

for (in t r = 0 ; r n r e a l ; r ++)
N simu [0]= N 0 ;
N=N 0 ;

50 N save =N 0 ;
/ / Advance : t ime s t e p s
for (in t t = 0 ; t s t e p s 1; t ++)

/ / t r a n s i t i o n s u n t i l t he nex t measure p o i n t (d t i n t e r v a l s)
jump =Math . random () ;

55 i f (jump prob N 0) N ;
/ / save the number of p a r t i c l e s in an array
N simu [t + 1] + = N;
i f (r ==0) N exact [t +1]=(in t) (N 0 Math . exp (d e c a y c o n s t t)) ;

2.4. PLOT METHODS IN THE SIMULATION PACKAGE 91

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Radioactive Decay

time t

N
u
m
b
e
r

o
f

P
a
r
t
i
c
l
e
s

f i l l

6.0
7.0
8.0
9.0

1e011e01

2.0

3.0

4.0

5.0

6.0
7.0
8.0
9.0

1e021e02

0 50 100 150 200 250 300

Radioactive Decay

time t

N
u
m
b
e
r

o
f

P
a
r
t
i
c
l
e
s

f i l l

Figure 2.9: Two realizations of the stochastic process of the radioactive decay. The first one with linear y axis scaling
and the second one uses a logarithmic y axis scaling. The blue lines are the exact solution and the red ones are the
simulations. The parameters of the simulation were choosen to be N0 100; p $%t 0 01s 1; %t 1s; tend
300s

4.0

6.0
8.0

1e02

2.0

4.0

6.0
8.0

1e03

0 50 100

Radioactive Decay

time t

N
u
m
b
e
r

o
f

P
a
r
t
i
c
l
e
s

f i l l

0

100

200

300

400

500

600

700

800

900

1000

0 50 100

Radioactive Decay

time t

N
u
m
b
e
r

o
f

P
a
r
t
i
c
l
e
s

f i l l

Figure 2.10: The same as figure 2.4, but with different parameters: N0 1000; p $%t 0 03s 1; %t
1s; tend 100s

92 CHAPTER 2. PLOTTING WITH JAVA

60 N decay [r]= N 0 N;

At the end of the realizations loop we perform the average. This is seen in lines 59 to 62.
Note, furthermore, that in order to speed up the program we have modified slightly the algorithm so

that we can save a loop. We have exploited the fact that the probability to observe one decay in time %t is
proportional to number of nuclei which did not already decay, i.e.,

p *%t (2.6)

where * $N and %t must be small enough so that *-t 1.
What about %t ?????????????????
With the help of the Histogram class, we now want to look at the statistics of the number of decays

in a given interval.
It is now easy to verify that the number of decays in a given interval is distributed according to the

Poisson distribution. To this end we have counted the number of decays in a given interval. This is
accomplished in the lines xy. At the end of the program we plot in a histogram the distribution of the
number of decays and overlay the expected Poisson distribution.

The results of this test is seen in Fig. xy. In fact it can be shown that the number of decays in a given
interval are distributed according to a Poisson distribution. From the elementary rules of combinatorics we
know that the probability to observe n decays in time t m%t is therefore given by

P pn 1 p m n m
n

(2.7)

Inserting the definition of p the above expression can be cast in the form

P
*t
m

n 1 *t
m

m n m!
m n !n!

(2.8)

Performing the limit %t 0 (i.e. m .) and considering that

1
*t
m

m
exp *t (2.9)

1
*t
m

n
1 (2.10)

and

m!
m n !n!

mn (2.11)

we obtain the result

P
µn exp µ

n!
(2.12)

where µ *t. The above distribution is the well know Poisson distribution.

Listing of the full Program

/ a p p l e t code =” R a d i o a c t i v e D e c a y p t p l o t 2 . c l a s s ” width =800 h e i g h t =450
Run App le t / a p p l e t /

import j ava . awt . ;
import j ava . awt . even t . ;

2.4. PLOT METHODS IN THE SIMULATION PACKAGE 93

5 import ptolemy . p l o t . ;
import s i m u l a t i o n . ;

publ i c c l a s s R a d i o a c t i v e D e c a y p t p l o t 2 extends j ava . a p p l e t . Apple t
p r i v a t e s t a t i c in t width =800, h e i g h t =450;

10
p r i v a t e in t n r e a l = 1 0 0 0 ; / / number of r e a l i z a t i o n s

p r i v a t e in t N 0 =100 ; / / i n i t i a l number of par t .
p r i v a t e double t e n d =100 ; / / end t ime of s i m u l a t i o n

15 p r i v a t e double d e c a y c o n s t = 0 . 0 0 1 ; / / decay c o n s t a n t lambda
p r i v a t e double dt = 1 ; / / t ime i n c r e m e n t fo r sav ing
p r i v a t e double prob = d e c a y c o n s t d t ; / / decay p r o b a b i l i t y
publ i c in t [] N simu , N exact , N decay ; / / t he array for sav ing r e s u l t s
publ i c s t a t i c P l o t p l o t 1 , p l o t 2 ;

20
/ Teh main r o u t i n e for runn ing the program as an a p p l i c a t i o n /
publ i c s t a t i c void main (S t r i n g [] a rgs)

j ava . a p p l e t . Apple t a p p l e t = new R a d i o a c t i v e D e c a y p t p l o t 2 () ;
Frame frame = new Frame ("Radioactice Decay using PTPlot") ;

25 frame . addWindowLis tener (new WindowAdapter ()
/ / Handle window c l o s e r e q u e s t s
publ i c void windowClosing (WindowEvent e) System . e x i t (0) ;) ;

frame . s e t S i z e (width , h e i g h t) ; / / s e t s i z e of window
frame . add ("Center" , a p p l e t) ; / / add a p p l e t to the window

30 frame . show () ; / / d i s p l a y window on screen
a p p l e t . i n i t () ; / / s t a r t a p p l e t

/ The a c t u a l main program , s t a r t e d by a browser or by the main method
35 C a l c u l a t e a r a d i o a c t i v e decay and p l o t the r e s u l t i n g p o i n t s us ing

the PTPlot c l a s s e s . Compare wi th the e x a c t r e s u l t . /
publ i c void i n i t ()

in t s t e p s , N, N save ;
double jump ;

40
s t e p s = (in t) (t e n d / dt)+1 ;
N simu =new int [s t e p s] ;
N decay =new int [n r e a l] ;
N exact =new int [s t e p s] ;

45 N exact [0]= N 0 ;

for (in t r = 0 ; r n r e a l ; r ++)
N simu [0]= N 0 ;
N=N 0 ;

50 N save =N 0 ;
/ / Advance : t ime s t e p s
for (in t t = 0 ; t s t e p s 1; t ++)

/ / t r a n s i t i o n s u n t i l t he nex t measure p o i n t (d t i n t e r v a l s)
jump =Math . random () ;

55 i f (jump prob N 0) N ;
/ / save the number of p a r t i c l e s in an array
N simu [t + 1] + = N;
i f (r ==0) N exact [t +1]=(in t) (N 0 Math . exp (d e c a y c o n s t t)) ;

60 N decay [r]= N 0 N;

94 CHAPTER 2. PLOTTING WITH JAVA

/ / compute mean v a l u e s
for (in t t = 1 ; t s t e p s 1; t ++)

65 N simu [t] /= n r e a l ;

/ / s t a r t a new p l o t and p l o t the p o i n t s
p l o t 1 = new P l o t () ;

70 in t t max =(in t) t e n d ; / / f o r p l o t t i n g t i c k m a r k s ! !
/ / s e t the s i z e of the f o n t s for t i t l e and l a b e l s
p l o t 1 . s e t L a b e l F o n t ("Serif-bold-18") ;
p l o t 1 . s e t T i t l e F o n t ("Serif-bold-24") ;

75 p l o t 1 . s e t T i t l e ("Radioactive Decay") ; / / T i t l e o f p l o t
p l o t 1 . s e t M a r k s S t y l e ("none") ; / / do t s , p o i n t s or v a r i o u s
p l o t 1 . se tXLabe l ("time t") ; / / s e t the l a b e l s of the axes
p l o t 1 . se tYLabe l ("Number of Particles") ;
p l o t 1 . setXRange (0 , t max) ; / / s e t the x range

80 p l o t 1 . s e t G r i d (true) ; / / Grid or not ?
p l o t 1 . setYLog (f a l s e) ; / / l o g a r i t h m i s p l o t ?
p l o t 1 . s e t B a r s (f a l s e) ; / / shou ld I use bars ?
p l o t 1 . s e t B u t t o n s (true) ;

/ / Create the t i c k s for the a x i s
85 for (in t i = 0 ; i =t max ; i +=50)

p l o t 1 . addXTick (I n t e g e r . t o S t r i n g (i) , i) ;
for (in t i = 0 ; i =N 0 ; i +=100)

p l o t 1 . addYTick (I n t e g e r . t o S t r i n g (i) , i) ;
/ / p l o t the p o i n t s and connec t them

90 boolean connec t = f a l s e ;
for (in t t = 0 ; t t max ; t ++)

p l o t 1 . addPo in t (0 , t , N simu [t] , connec t) ;
p l o t 1 . addPo in t (1 , t , N exact [t] , connec t) ;
i f (connec t == f a l s e) connec t = true ;

95 add (p l o t 1) ;

/ Compute the decay d i s t r i b u t i o n /
Histogram h i s t o ;
h i s t o = new Histogram (N decay) ;

100 h i s t o . s e t P o i n t s U n i f o r m (0 , 5 0) ;
h i s t o . e s t i m a t e () ;
p l o t 2 = h i s t o . p l o t () ;
p l o t 2 . s e t B a r s (f a l s e) ;
p l o t 2 . s e t I m p u l s e s (true , 1) ;

105 add (p l o t 2) ;
/ / p l o t the e x a c t p r o b a b i l i t y d i s t r i b u t i o n : Po i s son
double y ;
connec t = f a l s e ;
double dummy = s i m u l a t i o n . D a t a A n a l y s i s . arraySum (h i s t o . ge tHi s tog ram ()) ;

110 for (in t i = 0 ; i s t e p s / 2 ; i ++)
y= s i m u l a t i o n . D i s t r i b u t i o n . Po i s son (i , prob N 0 N 0) dummy ;
p l o t 2 . addPo in t (0 , i , y , connec t) ;
i f (connec t == f a l s e) connec t = true ;

115

Run the program for the following two sets of parameters:
N0 100 p 0 001s 1 %t 1s t 100s

N0 100 p 0 0001s 1 %t 1s t 100s
with nreal = 100 and nreal = 1000.

2.5. PRINTING IN JAVA AND WITH PTPLOT 95

The result of two simulations can be seen in Figs. 2.11 and 2.12.

!0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

x102

!0 5 10 15 20 25 30 35 40 45 50

f i l l

Figure 2.11: The distribution of the number of decays using 100 realizations. The simulation was run for N0 100
and $ 0 001.

2.5 Printing in Java and with Ptplot
Now that we have learned how to make plots in Java, it is of great importance to get a printed version of
our graphics. For this purpose Java has commands for initiating a print job and preparing the output for the
printer. Java always produces potscript output. Because the procedure has changed from Java 1.1 to Java
2, we only present the Java 1.1 version not to get confused. In Java 1.0 there have been no methods for
printing in Java, we would have to use screen capture programs for example.

Because printing is of course system dependent, it is not as easy as issuing a print command, but it is
still managable. In Java printing is done basically in four steps:

1. Get a Toolkit for the component we want to print. Use methodgetToolkit() in the java.awt.Component
class.

2. Get a PrintJob. Use the getPrintJob(Frame f, String printjobname, Prop-
erties printprops) method in the java.awt.Toolkit class.

3. Start “printing”:

(a) Get the graphics context for the component in question. Use the getGraphics()method of
the java.awt.PrintJob class.

(b) Print the desired part of the component. If we want to print everything contained by the
component use the printAll() method, otherwise use just the print() method of the
Component class.

(c) Send the data to the printer or file by using the dispose()method of the java.awt.Graphics
class.

4. Finish printing and close dialog box. Use end() method of the java.awt.PrintJob class.

96 CHAPTER 2. PLOTTING WITH JAVA

!0

2

4

6

8

10

12

14

16

18

20

22

!0 5 10 15 20 25 30 35 40 45 50

f i l l

Figure 2.12: The distribution of the number of decays using 1000 realizations. The simulation was run for N0 100
and $ 0 001.

The programRadioactiveDecay_printing.javademonstartes the use of the printing capabilities
of Java.

/ P r i n t the p l o t in a f i l e or an p r i n t e r /
/ / 1 .) ge t a ” c o n n e c t i o n ” to the p r i n t e r
T o o l k i t t o o l k i t = p l o t . g e t T o o l k i t () ;

35 / / 2 .) ge t a d i a l o g box for the p r i n t job
P r i n t J o b job = t o o l k i t . g e t P r i n t J o b

(frame , "Radioactive Decay" , (P r o p e r t i e s) nul l) ;
i f (job ! = nul l)

/ / 3 .) ge t the g r a p h i c s handle
40 Graph ics pg = job . g e t G r a p h i c s () ;

/ / p r i n t a l l components c o n t a i n e d in com
p l o t . p r i n t A l l (pg) ;
/ / send i t to p r i n t e r
pg . d i s p o s e () ;

45 / / 4 .) c l o s e a l l n e c e s s a r y s t u f f
job . end () ;

Of course there are some drawbacks to talk about. First of all with this code we always get the output in
a size referring to our actual picture on the screen, it does not use the full paper size. If we want to use the
whole page size available we have to scale the component to be plotted to the full size and scale back after
printing. This is what we do in the convenience class we have written for easy printing in the simulation
package.

So if we want to print a component scaled to the full size, we use the PrintComponent.Dialog()
method in the simulation package. It scales our component to the full size – no matter if it should be on a
portrait or landscape page – and sends the scaled picture to the printer or a postscript file. After printing it
scales back to the size it had before. The whole code above could therefore be substituted by the line

import simulation.*;

2.6. ADVANCED TOPICS 97

....
PrintComponent.Dialog(frame, plot, "Radioactive Decay");

Because most of the time we need postscript or encapsulated postscript (EPS) files of the plots or graphics,
this is the most common use of the printing features for most scientists.

A second method of the simulation class called DialogNoScaling() can be used to produce
unscaled output of the component or container. It has the same syntax as the Dialog() method before.

There is one caveat to mention: if we are going to insert the produced postscript files into TeX/LaTeX,
we will have to do some editing on the postscript files. First of all we have to add a bounding box line at
the beginning of the postscript file. We can do this by hand: put a line (for a portrait figure)

%%BoundingBox: 0 0 595 840

at the beginning of the postscript file (We can adapt the numbers to the figure at hand and check the area by
viewing it in ghostscript/ghostview.) or we can use a program to automatically calculate and insert a bound-
ing box command (like e.g. epstool, gsview on Windows, etc.). The second change is to remove all the
lines between %%BeginSetup and %%EndSetup except a possible rotate line like 90 rotate 0 -
595 translate. This is necessary, because some strange effects appear in the resulting .dvi or .ps
file after ”texing”.

Another drawback might be the resolution of the postscript file. This happens especially when printing
GUI components and is not present when plotting ptplot plots fortunately. Java kind of rasters the screen
display and because the screen resolution is much worse than the printer resolution this gives unpleasant
results. It also gives strange results if we scale a large GUI to a small A4 or Letter format for printing,
which could look very ugly or even miss some of the displayed objects. But as already mentioned, most of
the time we only need ptplot plots in postscript files and this works great with the code above.

In Java 2 there has been some changes to the printing interface. A new class has been introduced in
Java2: java.awt.print. This class provides much more sophisticated methods and it is even able of
handling color models, which is very important for using colors on displays and printers. This is a big
step ahead, but for the details we refer to the API documentation, because it is also a bit more difficult to
understand.

Ptplot 2.2 printing facilities ????? (EPS)

Printing from an Applet Usually applets are not allowed to initiate printjobs, unless a SecurityManager,
another important Java class, explicitly allows for it. The browser or the appletviewer have to initiate the
printjob, and they only allow it, if the security manager does. But the person who executes the applet can
always use the printing facilities of the browser and plot the whole panel visible in the browser, but this is
from outside the Java program.

What we can do is, write a main method in the applet and start it as an application. Do the plots and
print them from the application.

If we use a security manager and are allowed to print, we need a frame for our applet, because the
getPrintJob() command only takes a frame and not an applet as first argument. So just put a frame
into the applet and then put the applet inside the frame.

2.6 Advanced topics
2.6.1 3D plots in Java – Java3D
Sometimes we are forced to use 3D plots to visualize our data and therefore it is natural to ask for a package
to accomplish three dimensional plots. Unfortunately to our knowledge there is (yet) no freely available
package in Java for 3D plots. Ptplot can only handle 2D plots and will not be extended to 3D in the future.
JSci (see chapter 1.13.3) can at least handle some very basic 3D plots.

Because it is the only (free) way of producing 3D graphs yet, an example in Figure 2.13 introduces
some of these features.. It is actually not what we expected, but it is a beginning. We can also use the
mouse to rotate the 3D graph in the right half of the window. The graph on the left is a contour plot. The
details are explained in the API documentation to the JSci package.

98 CHAPTER 2. PLOTTING WITH JAVA

Te
st

Figure 2.13: An example of the 3D plotting capabilities of JSci.

import JSc i . awt . ;
import j ava . awt . ;

publ i c c l a s s JSci3DGraph
5 publ i c s t a t i c void main (S t r i n g [] a rgs)

C o n t o u r P l o t con tourGraph ;
LineGraph3D line3DGraph ;
f i n a l in t N = 2 0 ;
double [] [] a r r a y = new double [N] [N] ;

10
for (in t i = 0 ; i N; i ++)

for (in t j = 0 ; j N; j ++)
a r r a y [i] [j]= Math . random () ;

15

Frame f = new Frame ("Test") ;
f . s e t S i z e (4 0 0 , 5 0 0) ;

20 l ine3DGraph = new LineGraph3D (a r r a y) ;
con tou rGraph = new C o n t o u r P l o t (a r r a y) ;

f . s e t L a y o u t (new GridLayout (2 , 2)) ;
f . add (con tourGraph) ;

25 f . add (l ine3DGraph) ;
f . show () ;
/ / s i m u l a t i o n . Prin tComponent . Dialog (f , f , ” P r i n t I t ”) ;

There is also a program called SciVis2, which is completely written in Java and allows for 2D and

2http://kopernik.npac.syr.edu:8888/scivis/

2.6. ADVANCED TOPICS 99

3D plots in many different ways. But up to now, there are only C and Fortran interfaces to supply data to
it. We can also read from files, but first we have to understand the data format, which is described in the
users guide. The authors told us they are developing a Java interface to supply data directly to SciVis.

At the moment, the best solution is to write the data to a file and use an external program available to
we. The most common denominator would possibly be “Gnuplot”, which is available for many different
platforms and can create a lot of different 3D plots. And in the next chapter we will learn how to call
gnuplot inside a Java program.

Since Java 2, there is a new (external) API – not included in the JDK 1.2 disribution, we have to get it
seperatly – called Java3D. This is a full implementation of three dimensional routines to produce all kinds
of 3D scenes and objects and even move these scenes. With this API it seems to be possible to write a 3D
plotting program in the near future. So the lack of 3D plotting features in Java should be hopefully gone
soon.

2.6.2 Using (system dependent) external programs like gnuplot
There is a last way of obtaining 3D plots “in Java”: We can use an external program like Gnuplot or any
other command line tool and call it from a Java program. This of course is not system independent and is
not recommended unless we are desperatly needing it.

In Java there is a class called Runtime in the java.lang package, which consists of all kind of
methods to change and use the environement we are running our Java program in. This can be used to start
a subprocess of the running Java program. So starting an external process from a Java program can be done
in two steps:

Get a Runtime object of the running Java program.

Start a new process as a subprocess of the givenRuntime object. We have to use theexec(String)
instance method of the Process class for this.

We can also read the standard output of the subprocess and use it in our Java program. To demonstarte how
it actually works, we give two examples:

1. A Java program starts a Gnuplot program, which plots a sine curve.

/
Gnuplot . java

5
Created : Wed Jun 3 0 1 7 : 5 1 : 3 2 1 9 9 9

@author Pe ter B i e c h e l e
@version 1 . 0

10 /

import j ava . io . ;

publ i c c l a s s Gnuplot
15

publ i c s t a t i c void main (S t r i n g [] a rgs) throws IOExcep t ion

/ / ge t a Runtime o b j e c t
Runtime r = Runtime . getRunt ime () ;

20
/ / s t a r t the p r o c e s s : gnup lo t
P r o c e s s p = r . exec ("gnuplot Gnuplot.gnu") ;

25 / / Gnuplot

100 CHAPTER 2. PLOTTING WITH JAVA

We also need the Gnuplot program to be executed:

p l o t s in (x)
pause 5

2. A Java program executes a “ls -al” command on a UNIX machine, which just gives the directory
listing. For a Windows system we just use the “dir” command instead.

/
D i r e c t o r y L i s t i n g . java

5
Created : Wed Jun 3 0 1 7 : 5 1 : 3 2 1 9 9 9

@author Pe ter B i e c h e l e
@version 1 . 0

10 /

import j ava . io . ;

publ i c c l a s s D i r e c t o r y L i s t i n g
15

publ i c s t a t i c void main (S t r i n g [] a rgs) throws IOExcep t ion

/ / ge t a Runtime o b j e c t
Runtime r = Runtime . getRunt ime () ;

20
P r o c e s s p ;

/ / s t a r t the p r o c e s s : UNIX
p = r . exec ("ls -al") ;

25
/ / s t a r t the p r o c e s s : Windows
/ / p = r . exec (” d i r ”) ;

/ / wai t fo r the p r o c e s s to f i n i s h
30 try

p . wa i tFo r () ;
catch (I n t e r r u p t e d E x c e p t i o n e)
System . out . p r i n t l n ("Exited Process !") ;

35 / / read the s tandard o u t p u t from the p r o c e s s
Buf fe redReade r in =new Buf fe redReade r (new I n p u t S t r e a m R e a d e r

(p . g e t I n p u t S t r e a m ())) ;
in t c ;
while ((c= in . read ()) 0)

40 System . out . p r i n t ((char) c) ;

/ / D i r e c t o r y L i s t i n g

This time we also wait for the execution of the process to finish and then read the standard output
and display it on the screen.

2.7. EXERCISES 101

2.7 Exercises
Use the Java method Math.random() to solve the following problems (do not care about the quality and
the algorithm of the random number generator, for now):

EXERCISE 2.1 Photoabsorption [?]
Consider the absorption of photons passing through a gas in two dimensions. We model the gas by intro-
ducing slabs of width dx and density n (in particles per area), which absorb the incident photons. The slab
particles have a cross-sectional area of '.

So the probability of a photon to be absorbed in the slab will be (M is the number of particles in the
slab of the height dy)

P Photon absorbed
M'
dy

'ndxdy
dy

'ndx

We have assumed that there is no overlap between the cross-sections of the slab particles.

dxdxdx

Photons

Photons

n n n n n
' ' ' ' '

dy

M M M M M

Figure 2.14: The configuration of the system.

Write a program to simulate this process on the computer. Take N incident photons and watch the
number of particles left over against the slabs passed in a diagram. Do this simulation several times and
calculate the ensemble-average. What process we know is similar to this behaviour and what takes the
place of the spatial dimension in that case?

EXERCISE 2.2 Monte-Carlo Integration – Speed and Accuracy
Write a program for the calculation of the following integral:

I
1

0

1
1 x2 dx

1. using the hit and miss method

2. using the standard method

102 CHAPTER 2. PLOTTING WITH JAVA

For both algorithms, calculate the mean and the standard deviation. Also use the analytical result of the
integral to calculate ". Compare the accuracy of both algorithms using the approximations of ". Compare
the speed of the two programs by using the cputime ???? function in Matlab. (e.g. type the following to
time the random number generator: t=cputime;x=rand(1000);cputime-t)

To this end, create a table and a plot with the two parameters (n: the number of intervals and m: the
number of realizations) against the accuracy (use at least 5 values). To save time, we can first check for a
good n and then do the plots only against m. For the speed, plot the cputime against the achieved accuracy
for many different m.

EXERCISE 2.3 Eulers Constant using Monte-Carlo Algorithm [?]
Suppose throwing N darts randomly at a dart board, which has been divided into R equal size regions.
The probability of hitting one region is p 1 R. ??? ERKLAERUNG !! Then the probability of hitting an
empty region (not already occupied by a dart) is 1 p N. Using the binomial distribution, we can get the
probability for hitting a region with m darts. If we choose the number of regions equal to the number of
darts thrown on the board, we have p 1 N and therefore

P hitting an empty region 1
1
N

N

Because the above series converges to e for N ., we can use the following method to get an approx-
imation of the Euler constant:

(i) Throw randomly a large number of darts (say N) on a board, which has been divided into N equal
size regions.

(ii) Count the number of empty regions (call it N0).

(iii) The fraction N N0 is a good estimate of the Euler constant e.

Write a program for that algorithm and check the results. We can also use N N1, if N1 is the number
of regions with the occupancy of one dart. Check this, too. What N do we need to get the same accuracy
using the formula? And how many terms of the series for e (.

i 0 1 i! e)?

Part II

Introduction to Stochastic Variables

103

Chapter 3

Stochastic Variables

Since the notion of random variables will be essential for the understanding of stochastic methods this
chapter will be devoted to the introduction of the fundamental concepts of probability theory.

3.1 The Nature of Probabilities
In the previous chapter we have already made use of probabilistic notions in an intuitive way. However,
we have not asked the following question: What are probabilities? How can we formulate the notion of
probability in such a way that it is useful for physical applications?

Essentially, there are three possible definitions of probability Brody [1993]: a) the axiomatic interpre-
tation, b) the frequency interpretation, and c) the ensemble interpretation.

3.1.1 The Axiomatic Interpretation
The axiomatic definition Feller [1950] of probabilities has been proposed by Kolmogorov in 1933. The
formal objects to which we want to attribute probabilities are called events and are subsets of a basic set
/ which is called the event space or in physical applications the phase space. If the event e belongs to
/, so does its complement / e also; the null event is therefore also in /. Events containing only one
member of / are called the elementary events of /.

A function P e , called the probability of e can be assigned to each event e in /. The function P e has
the following properties:

(i) P e 0 for all e in /;
(ii) P / 1;
(iii) If e1 e2 are in / and are pairwise disjoint, i.e., ei e j when i j, then P e1 e2

P e1 P e2 .
It follows immediately from the above three axioms that
(iv) If ē is the complement of e, i.e., the set of all events which are not in e, then P ē 1 P e ;
(v) P 0.

3.1.2 The Relative Frequency Interpretation
In his attempt to axiomatize probability theory, von Mises introduced in 1919 the notion of a Kollektiv,
which stands for a single infinite sequence of random events such as the outcomes of throwing a coin.
He defined then the probability of some event to be the limit of its relative frequency in such a series of
observations when the series becomes infinitely long (the Kollektiv) Compagner [1991]; Brody [1993]. If
we denote by n the number of data in the series, by m e the number of times the event is observed in it,
then the probability P e is defined as

P e lim
n .

m e
n

(3.1)

105

106 CHAPTER 3. STOCHASTIC VARIABLES

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25
Evolution of the relative frequency

n

re
la

tiv
e

fre
qu

en
cy

Figure 3.1: Simulation of the evolution of the relative frequency of throwing a 4 in play of die.

Of course, such a series of events must have the property that any infinite subsequence in it must have the
same limit.

The problem with this definition is the following one: How can any sequence of experimental data,
which will be always be finite, have the properties of such a Kollektiv? In practice the relative frequencies
for subsequencies will always differ from that in the main sequence.

To illustrate the problems with the frequency interpretation of probabilities we consider the following
example. We throw a die n times and look at the relative frequency m 4 of the outcome of throwing a 4.
This experiment will be simulated with the help of the following program.

Listing of the program relfreq.

% Program r e l f r e q : s i m u l a t i o n of the e v o l u t i o n of the
% r e l a t i v e f r e q u e n c y of th rowing a d ie
c l e a r ; he lp r e l f r e q ;
R=rand (4 0 0 , 1) ;

5 n =0;
for i =1:400

i f (R(i) 0 . 5 & R(i) 2 / 3)
n = n + 1 ;

end
10 m(i) = n / i ;

end
p l o t (1 : 4 0 0 , m, ’ x ’) ;
t i t l e (’ E v o l u t i o n of the r e l a t i v e f r e q u e n c y ’) ;
x l a b e l (’ n ’) ; y l a b e l (’ r e l a t i v e f r e q u e n c y ’) ;

15 hold on ;
p l o t ([1 4 0 0] , [1 / 6 1 / 6] , ’ ’) ;
hold o f f ;

The result of an experiment for up to 400 throws is shown in Fig. (3.1.2). Running the program again
we observe another approach to the asymptotic value. We recognize immediately the difficulties with von
Mises definition of probability.

3.1. THE NATURE OF PROBABILITIES 107

3.1.3 The Ensemble Interpretation
We know from statistical mechanics the notion of ensemble. An ensemble is a collection of a large number
N of equally prepared systems (equal models). A simple example is the microcanonical ensemble, which
is the ensemble of all microstates in phase space, which are characterized by fixing the macroscopic values
for the the energy E, the volume V and the number of particles N.

The abstract concept of an ensemble allows naturally the definition of a mean value. We have to
consider two cases:

(i) The ensemble contains a finite, discrete number of models: Let n be the number of models and Q i
the interesting quantity in model i. The ensemble mean value Q is then defined as

Q
n

i 1

Q i
n

(3.2)

(ii) The models are characterized by some continuous parameter, i.e., the initial positions of molecules
in a gas: If we name the continuous parameter 0, the phase space as / , and n w a weight function
characterizing the ensemble, then

Q /Q 0 dn 0

/ dn 0
(3.3)

Usually, the function n 0 can be derived on the basis of the theoretical model on which the ensemble
relies upon.

Let us consider as a simple example from equilibrium statistical mechanics a gas consisting of N parti-
cles. The microstates of the system are the points q p r1 r2 rN p1 pN in the 6–dimensional
phase space. The probability to find the microsystem at time t 0 in a volume element dV d 3Nqd3N p
around q p is given by

dw q p 1 q p d3Nqd3N p (3.4)

where 1 q p is the distribution function. For the microcanonical ensemble the distribution function 1
simply reads

1 q p c const for E % H q p E
0 otherwise (3.5)

Probabilities can be introduced as a special kind of ensemble average. Let A be a property, which the
members of the ensemble may have or not and let us define an indicator function

!A 0
1 if member labelled 0 has property A
0 rmi f not (3.6)

The probability of A in the ensemble is simply defined as the ensemble average of ! A 0

P A !A 0 /!A 0 dn 0

/ dn 0
(3.7)

The probability is the relative weight in the ensemble of those members that have the property A. In the
case of a discrete ensemble the above definition of probability reduces to a sum over the members of the
ensemble having the property A

P A
n

i 1

! i
n

(3.8)

i.e., the probability is the relative frequency of the members having the property A in the ensemble.
It is clear that from the above definition of probability its is possible to derive the Kolmogorov axioms

of probability theory.

108 CHAPTER 3. STOCHASTIC VARIABLES

It is important to stress that the ensemble is a purely theoretical construction and has to be adapted to
the physical situation of interest as we will see in the future chapters. Furthermore, it is to be noted that the
ensemble interpretation allows the definition of time dependent probabilities, i.e.,

P A t !A t (3.9)

which are of fundamental importance while studying stochastic processes.

3.2 The Denition of Stochastic Variables
A stochastic variable X is an object which is defined by a space of states (space of events, phase space) and
by a probability density over this set. The space of state may be discrete, e.g. the numbers 1,2,3,4,5,6 for
a play of dice or the number of molecules in a chemical reaction, as well as continuous, e.g. the velocity
of a Brownian particle. Of course, the space of state may also be discrete and continuous at the same time,
e.g., the energy of an electron in the presence of some binding centers. When sampling a one dimensional
continuous stochastic variable X , the probability to find some value in the infinitesimal interval x x dx
will be expressed symbolically by

P x dx Prob X x x dx (3.10)

which defines the probability density P x associated with the stochastic variable X . It follows immediately
from the above equation and from the addition law of probability theory that the probability to sample a
value of X in the interval a b is given by

b

a

dxP x Prob X a b (3.11)

It is evident from Eqs. (3.10) and (3.11) that the probaility density is non–negative, i.e. P x 0 and that
it is normalized

.

.

dxP x 1 (3.12)

For later convenience we remark that the probability density may contain also sums over -–functions. For
example P x can also have the form

P x
n

pn- x xn P̃ x (3.13)

where P̃ x 0, pn 0, P̃ integrable and the normalization condition is

n
pn dxP̃ x 1 (3.14)

The distribution function F of the stochastic variable X is defined by

F x Prob X x (3.15)

The density function and the distribution function are related by the equation

F x
x

.

dx P x (3.16)

or equivalently by F x P x .

3.2. THE DEFINITION OF STOCHASTIC VARIABLES 109

3.2.1 Further Characterization of Stochastic Variables
A stochastic variable is completely defined by the space of states and by the probability density function.
However, it is helpful to introduce some other quantities in order to characterize them.

The expectation value, i.e. the average, of any function f X with respect to the stochastic variable X
is denoted by f X and is defined by

f X dx f x P x (3.17)

Of particular importance are the moments of a distribution. The m–th moment µm is defined as X m . Of
course, µ1 is the mean. The variance Var X is defined as

Var X X X 2 µ2 µ2
1 (3.18)

and is the square of the standard deviation '.
Another important quantity is the characteristic function G k . It is defined as

G k exp ikx
I

exp ikx P x dx (3.19)

and has the obvious properties

G 0 1 and G k 1 (3.20)

The characteristic function is also called the the moment generating function, because expanding the expo-
nential function in a Taylor series we get

G k
.

n 0

in

n!
kn Xn (3.21)

Thus, if G k is known the moments are easily evaluated as

dn

dkn G k in Xn (3.22)

The same function serves to generate the so–called cumulants which are defined as

lnG k
.

n 1

ik n

n!
2n (3.23)

and are combinations of the moments, i.e., the first three cumulants are given by

21 µ1 (3.24)
22 µ2 µ2

1 '2 (3.25)
23 µ3 3µ2µ1 2µ3

1 (3.26)

It can be shown Gardiner [1990] that the cumulant generating function cannot be a polynomial of de-
gree greater than 2, that is, either all but the first two cumulants vanish or there is an infinite number of
nonvanishing cumulants.

REMARK (kappai given then g(k) unique !!!???????????)

3.2.2 Some Important Random Variables
Let us first introduce and discuss briefly some important continuous one dimensional probability densities.

110 CHAPTER 3. STOCHASTIC VARIABLES

The Uniform Density

The simplest density is the uniform density which is constant if x lies within the interval a b and zero
otherwise, i.e.,

P x 1 b a (3.27)

It is easy to check that the mean of the uniform distribution is

X
a b

2
(3.28)

and that the standard deviation of a uniformly distributed random variable is

'
b a
2 3

(3.29)

As we will see the uniform probability density will play a fundamental role in the forthcoming chapters.

The Exponential Density Function

The exponential density function is defined as

P x aexp ax (3.30)

where a is any positive constant. It is easy to verify that the mean and the standard deviation of an expo-
nentially distributed random variable are equal

X '
1
a

(3.31)

The Gaussian or Normal Density Function

The most important density function for physics is the gaussian probability density. It has the form

P x 2"a2 1 2 exp x x0
2 2a2 (3.32)

for a positive and . x0 .. The mean and the standard deviation of the Gaussian probability density
are given by µ1 x0 and by ' a, respectively. The characteristic function of the Gaussian density reads

G k exp iµ1k
1
2
'2k2 (3.33)

which means that 21 µ1, 22 '2 and that all higher cumulants vanish.

The Cauchy or Lorentz Density

The Cauchy or Lorentz density is defined as

P x
1
"

a
x x0 2 a2 (3.34)

for positive a and . x0 .. It is an example of a probability density which does not have a finite
variance. In fact, not even the integral defining the mean value converges.

Let us now discuss some typical discrete probability densities. The discrete random variable will be
denoted by N.

3.2. THE DEFINITION OF STOCHASTIC VARIABLES 111

The Discrete Uniform Probability Density

The discrete uniform probability density is defined by

P n
1

n2 n1 1
(3.35)

for n1 n n2 and zero otherwise. Of course, n1 and n2 are integer numbers and n1 n2. Its mean value
is

N
n

nP n
n1 n2

2
(3.36)

and its variance

'2 n2 n1 n2 n1 2
12

(3.37)

The above equations are easily proven with the help of the relations

N

n 1
n

N N 1
2

;
N

n 1
n2 N N 1 2N 1

6
(3.38)

The Binomial Distribution

Let us assume that the random variable Y can take only two values y 1 y2 , the probability for the value
y1 being p and correspondingly for y2 (1-p). If we consider N realizations of the stochastic variable Y the
probability to find the value y1 N times under the n results is the binomial density P n

P n
N!

n! N n !
pn 1 p N n (3.39)

for 0 n N. The mean and variance of the binomial density are given by

n N p (3.40)

and

'2 N p 1 p (3.41)

It is easy to check the normalization of the binomial distribution since

1 p 1 p n
N

n 0

N!
n! N n !

pn 1 p N n (3.42)

The Poisson Density

The Poisson density as we already know is defined as

P n
exp a an

n!
(3.43)

for n 0 and a R. The mean value and the variance of the Poisson density are equal,

n '2 a (3.44)

As we already know from the discussion of the radioactive decay the Poisson density is a limit of the
binomial probability density for N ., p 0 while N p a const. Another limit of the Poisson density

112 CHAPTER 3. STOCHASTIC VARIABLES

which deserves consideration is the limit a 1: In this limit the Poisson density will be essentially different
from zero only for n a. For n 1 the Stirling formula holds

n! 2"n 1 2nn exp n (3.45)

so we can write

ln
exp a an

n!
2"a 1 2 n a n ln

n
a

(3.46)

Setting (n a 2 and since, for (1 ln 1 (((2 2 and for n a we can write

ln
exp a an

n!
2"a 1 2 n a 2 1

2a
(3.47)

So that finally for a 1

exp a an

n!
exp

n a 2

2a
(3.48)

Thus, in the limit a 1 the Poisson density resembles a Gaussian density with mean a and variance a.

3.2.3 Multivariate Random Variables
Up to now we have considered only one dimensional stochastic variables. Obviously, n random variables
X1 X2 Xn which are sampled simultaneously can be interpreted as the components of an n–dimensional
stochastic variable X . Their joint density function Pn x1 xn is defined through the statement

Pn x1 xn dx1dx2 dxn Prob Xi xi xi dxi for each i 1 n (3.49)

If we look at the subset of stochastic variables X1 Xs, for s n we can easily write down with the help of
the elementary laws of probability theory the joint density function for this set irrespective of X s 1 Xn

Ps x1 xs Pn x1 xs xs 1 xn dxs 1 dxn (3.50)

Ps is a so–called marginal distribution.
The conditional density Ps n s x1 xs xs 1 xn is the joint density of X1 Xs given that Xs 1

xs 1, , Xn xn and is easily shown to be given by Bayes rule

Ps n s x1 xs xs 1 xn
Pn x1 xn

Pn s xs 1 xn
(3.51)

Two subsets X1 Xs and Xs 1 Xn are said to be statistically independent if Pn factorizes

Pn x1 xn Ps x1 xs Pn s xs 1 xn (3.52)

In this case Ps is the marginal as well as the conditional probability density.
The definition of moments is easily generalized to the multivariate case

Xm1
1 Xmn

n xm1
1 xmn

n P x1 xn dx1 dxn (3.53)

Accordingly, the characteristic function is given by

G k1 kn exp i k1X1 knXn (3.54)

Again the multivariate Taylor expansion in the variables k i generates the moments

G k1 kn
ik1

m1 ikn
mn

m1! mn!
Xm1

1 Xmn
n (3.55)

3.3. THE RANDOM VARIABLES TRANSFORMATION THEOREM 113

For completness we mention that the cumulants 2 X m1
1 Xmn

n are defined as

logG k1 kn
ik1

m1 ikn
mn

m1! mn!
2 Xm1

1 Xmn
n (3.56)

where the symbol idicates that we do not have to sum when all m vanish. As an example we give the
n n covariance matrix 2 XiXj

Cov Xi Xj Xi Xi Xj Xj (3.57)
XiXj Xi Xj (3.58)

The diagonal elements of the covariance matrix are, of course, the variances, whereas the off–diagonal
elements are called the covariances. With the help of the covariance matrix it is possible to define a
correlation coefficient

1i j
2 XiXj

2 X2
i 2 X2

j

(3.59)

For n 2 the statistical independence of X1 and X2 can be expressed through one of the following criteria:
(i) All moments factorize, i.e., X m1

1 Xm2
2 Xm1

1 Xm2
2 .

(ii) The characteristic function factorizes, i.e., G k1 k2 G k1 G k2 .
(iii) All cumulants 2 X m1

1 Xm2
2 vanish when both m1 and m2 differ from zero. Two variables X1 and X2

are called uncorrelated if their covariance is zero. This condition is weaker than statistical independence.
A typical example of a multivariate density is the density of the multivariate Gaussian distribution

p x
2" n 2

detA 1 2 exp
1
2

x µ i A 1
i j x µ j (3.60)

where A is a symmetric, positive definite matrix with elements Ai j. It is straightforward to check that the
mean value of X is given by

X µ (3.61)

that the covariance matrix is given by

Cov Xi Xj Ai j (3.62)

and that the generating function is

G k exp
1
2

kiAi jk j iµiki (3.63)

3.3 The Random Variables Transformation Theorem
We will discuss in this subsection a very helpful theorem by Gillespie. The proof of the theorem can be
found in the book by Gillespie Gillespie [1992] or in his paper Gillespie [1983].

We know already that a stochastic variable is defined by specifying its space of states and its probability
density. Here, we consider the n–dimensional random variables X X 1 Xn which are specified by
their joint probability density function P x1 xn . Let fi be functions of the n variables. With the help
of the fi we map the n random variables X1 Xn onto m new random variables Y1 Ym by

Yi fi X (3.64)

The random variable transformation theorem now states that the probability density of the new stochastic
variable Y is given by the expression

P Y1 Ym dx1 dxn

m

i 1
- yi fi x1 xn P x1 xn (3.65)

The integrals extend over the range of all Xi. For a proof of the random variable transformation theory see
Gillespie.

114 CHAPTER 3. STOCHASTIC VARIABLES

3.3.1 The Addition of Stochastic Variables
As a first simple example of the application of the random variable theorem we consider the addition of
two stochastic variables X1 and X2 with joint probability density P x1 x2 . The probability density P Y of
a new stochastic variable Y which is defined as the sum of X1 and X2

Y X1 X2 (3.66)

is then given by

P y - x1 x2 y P x1 x2 dx1dx2 (3.67)

We can perform the integration over x1 to obtain

P y P x1 y x1 dx1 (3.68)

For the special case of two statistically independent random variables X1 and X2 the above equation
simplifies to the following expression

P y PX1 x1 PX2 y x1 dx1 (3.69)

It is now easy to check that the following equations hold for the mean value and for the variance of the
new stochastic variable Y X1 X2

µ X1 X2 µ X1 µ X2 (3.70)

and

Var X1 X2 Var X1 Var X2 2Cov X1 X2

The last equation implies that only for uncorrelated stochastic variables we have the simple relation Var X 1
X2 Var X1 Var X2 .

The above results for the mean values and variances can easily be generalized to the so called linear
combination theorem. For any set of random variables X 1 Xn and any set of constants a1 an we
have

µ
n

i 1
aiXi

n

i 1
aiµ Xi

and

Var
n

i 1
aiXi

n

i 1
a2

i Var Xi 2
n 1

i 1

n

j i 1
aia jCov Xi Xj

3.3.2 One–to–One Transformations
Let us consider the following application of the random variables transformation theorem. Let X be a
random variable with probability density P x and let the random variable Y be defined as Y f X . Then
the density function of Y is given by

P y
.

.

dxP x - y f x (3.71)

3.3. THE RANDOM VARIABLES TRANSFORMATION THEOREM 115

For the case that the function f is a smooth, one–to–one transformation the equation y f x can be solved
uniquely for x as x f 1 y . Let us now change the integration variable in Eq. (3.71) from x to z f x

P y
.

.

dz f 1 z P f 1 z - y z

where we have made use of

dx f 1 z dz

Integrating over z yields

P y P f 1 y f 1 y

Since x f 1 y , then dx dy f 1 y , and we can rewrite the above equation as

P y P x
dx
dy

which is a very important formula in the theory of stochastic variables which we will use, e.g., in the next
chapter.

The previous result is easily generalized to many dimensions. If the transformations Y i fi X1 Xn
for i 1 n are one–to–one, then the probability density of the variables Y i is given by

P y1 yn P x1 xn
3 x1 xn
3 y1 yn

BEMERKUNG: ANALOGIE ZUR ANALYSIS !!!!!!!

3.3.3 The Central Limit Theorem
As an essential application of the random variable transformation theorem we prove the central limit theo-
rem. Let us consider N statistically independent random variables Xi with the same probability density P,
and, of course, the same mean µ and the same variance '2. With the help of the Xi we define a new random
variable Zn as

ZN
1
N

N

j 1
Xj µ (3.72)

Since the Xi are assumed to be mutually statistically independent their joint probability density is P x 1 P xN .
By the random variable transformation theorem the probability density of Z N is given by

P zN dx1 dxN

N

i 1
P xi - zN

1
N

N

j 1
Xj µ (3.73)

Using the integral representation of the -–function

- x x0
1

2"
dsexp is x x0 (3.74)

the -–function in Eq. (3.73) can be written as

- zN
1
N

N

j 1
Xj µ (3.75)

1
2"

.

.

dsexp iszN

N

j 1
exp isN 1 2 x j µ (3.76)

116 CHAPTER 3. STOCHASTIC VARIABLES

Inserting the above equation into Eq. (3.73) and changing the order of the x and s integrations we obtain

P zN
1

2"
dsexp iszN

N

j 1
dx jP x j exp isN 1 2 x j µ (3.77)

The above expression can be written more concisely in the form

P zN
1

2"
dsexp iszN G

s
N

N (3.78)

where we have introduced the characteristic function G by

G ! dxP x exp i! x µ (3.79)

The function G can be expanded in a Taylor series

G ! G 0 !G 0
!2

2
G 0 O !3 (3.80)

Since the n–th derivative of G is given by

G n !

.

.

dxP x i x µ n exp i! x µ (3.81)

For ! 0 the above expression evidently reduces to

G n 0 i n X µ n (3.82)

In particular we find G 0 1, G 0 0 and G 0 '2. Therefore, Eq. (3.80) can simply be written
as

G ! 1
'2!2

2
O !3 (3.83)

Inserting the above equation into Eq. (3.78) and putting ! s N we get

P zN
1

2"
dsexp iszN 1

'2s2

2N
O

s3

N 3 2

N

(3.84)

In the limit N . we have, of course,

lim
N .

1
'2s2

2N

N

exp
'2s2

2
(3.85)

Therefore, for sufficiently large N we can write Eq. (3.84) as

P zN
1

2"
dsexp iszN exp

'2s2

2
(3.86)

The above integral can easily be evaluated with the help of the formula
.

.

dxexp ibx exp a2x2 "1 2

a
exp

b2

4a2 (3.87)

to give

P zN
1

2"'2
exp

z2
n

2'2 (3.88)

Eq. (3.88) is the central limit theorem. It states that the random variable z N asymptotically becomes a
Gaussian distributed random variable with zero mean and variance given by ' 2. It is to be remarked that
we have only assumed that the random variables Xi have mean µ and variance '2. This is the reason for the
foremost importance of the Gaussian distribution.

3.4. EXAMPLES 117

3.3.4 The !2–Distribution

3.4 Examples
In this section, we will learn how to use random variables for a simple example of a Monte Carlo simulation:
the discrete–time random walk.

Before we look at the mathematical and physical part of this section, it is time to look at file operations
in Java. We want to use these to save all the data produced in the random walk program, which will be too
much to store in memory, to the harddisk. Then it can be further analyzed and plotted by other specialized
programs available (like GNUPlot, PVWave, Octave, etc.). You could of course also use the graphical
capabilities of Java (Ptplot) to get the figures, but often in simulations it is of great importance to read and
write data to disk for later usage, maybe also in a Java program. Later on in 10.3.5 we will apply these
methods for Symphony, a program to solve a problem in parallel.

A short comment upfront: to use file I/O in Java you have to use exception handling, but we still have
not discussed it. Because it is still possible to understand I/O operations, we start with this. In the next
section we will tell you how to handle and understand exceptions.

3.4.1 File Input/Output in Java
The Java I/O package is one of the largest and for the beginner one of the most difficult core package at a
first glance. But after a while you feel comfortable and it will be easy to use.

In figure 3.2 you can see the main classes of the package, which are all subclasses of thejava.lang.object
class. Except the Reader and Writer classes, all classes were already introduced in Java 1.0. In Java 1.1
the two additional classes just mentioned were added, because the InputStream and OutputStream
classes are using 8 bit characters and the new classes use 16 bit unicode characters for international lan-
guage support. In Java 2 only small changes have taken place and therefore you can still stick to the Java
1.1 standard, but should avoid using Java 1.0 I/O syntax if possible. This is also because the Java 1.1
Reader and Writer classes are faster than the old ones. Because File I/O almost always means handling
strings, we have to discuss this also in more detail.

The concept of Streams The basic concept of input and output in Java is the stream. A stream is a
collection of data in a certain order, which has to be transported from a source to a sink. For example you
want to read data from a file, then you need a stream from the file, which is the source, to a sink, which
could be an array. This array can of course be printed on screen to be read by the user. This can also be seen
as a stream using the array as a source and the screen as the sink. And really the System.out method,
which we are already familiar with, is derived from a stream (the PrintStream class).

For any data communication from one “point” to another you always have to use a stream in Java (like
in C++). A nice feature of streams is, that you can put two streams behind each other, meaning to put the
output of the first stream to the input of the second stream (see figure 3.3). This is the reason why modern
programming languages prefer to use streams to realize a very flexible input/output API.

You can even create very easily your own streams realizing very complex filtering methods, but after
reading this section you should be able to understand the basics of streams and go to the online API
documentation and find your way through the classes yourself.

ASCII Files But let us start with the most simple problem: We have an array of double values, for
example the x coordinates of the discrete–time random walk discussed afterwards and want to save them
in a file in the format time x-coordinate. To that end we need to open a file for writing, write the
array in it and close the file.

You probably would tend to look at the File class for reading and writing files, but this class is only
responsible for managing files, directories and paths. We can use it to create a name for our file to be
created. For file access, you have to use the Reader and Writer classes. So our small sample program
would look like:

118 CHAPTER 3. STOCHASTIC VARIABLES

java.lang.object

RandomAccessFile

Reader (1.1)

InputStream

OutputStream

Writer (1.1)

File

StringTokenizer

String

StringBuffer

java.io

java.util

java.lang

String
File
ByteArray
Pipe
Sequence
Filter

File
ByteArray
Pipe
Filter

Figure 3.2: Overview of the io package in Java 1.1 and related classes.

data objects Input
Stream

Input
Filter

Output
Filter

Output
Stream data

Figure 3.3: Connecting two streams together to get advanced functionality.

3.4. EXAMPLES 119

/ S imple F i l e I / O Program /

import j ava . io . ;
import j ava . u t i l . ;

5
publ i c c l a s s F i l e W r i t e S i m p l e

s t a t i c Random rand = new Random () ;

publ i c s t a t i c void main (S t r i n g a rgs [])
10 S t r i n g f i l e n a m e = "test.asc" ; / / s e t the f i l e n a m e

double [] a r r a y = new double [1 0 0] ; / / array to save
for (in t i = 0 ; i 100; i + +) / / c r e a t e a random array

a r r a y [i] = rand . nextDouble () ;
15

try
F i l e W r i t e r f o u t = new F i l e W r i t e r (f i l e n a m e) ; / / open a F i l e s tream
B u f f e r e d W r i t e r out = new B u f f e r e d W r i t e r (f o u t) ; / / use a b u f f e r
/ OR B u f f e r e d W r i t e r out = new B u f f e r e d W r i t e r (new F i l e W r i t e r (f i l e n a m e)) ; /

20
S t r i n g dummy ;
for (in t i = 0 ; i 100; i + +) / / w r i t e the array

dummy = Double . t o S t r i n g (a r r a y [i]) + "\n" ; / / c o n v e r t to S t r i n g
out . w r i t e (dummy) ; / / w r i t e to s tream = f i l e

25
out . c l o s e () ; / / c l o s e the s tream and f i l e

catch (IOExcep t ion e)

First of all you realize that instead of just using theFileWriter class we “pipe” it to a BufferedWriter,
which buffers the outgoing data between the disk and the memory. This is always desirable and should
therefore always be used. Otherwise you get a very bad performance. Because it is inconvenient to remem-
ber all this, we have written a convenience class in our simulation package. So you can have the same
program, only lines 17-18 (or 19) have to be changed to (and you have to import the simulation package,
see program FileWriteConvenience.java.):

F i l eOu t out = new Fi l eOut (f i l e n a m e) ; / / open a b u f f e r e d F i l e s tream

You can use a second argument to this constructor, which is a boolean variable and indicates if the
data should be appended to the already existing file or not. The full syntax of the method is therefore
FileOut(String filename, boolean append).

In line 23 the double gets converted to a string before it is written to the file. The actual writing of the
data to the file is done in line 24 with the help of the write(String s) method in the Writer class.

Now we want to read the contents of the file back in. We use the classes FileReader andBufferedReader
as you may have already guessed. The whole program looks like:

/ S imple F i l e I / O Program /

import j ava . io . ;
import j ava . u t i l . ;

5
publ i c c l a s s Fi l eReadS imple

publ i c s t a t i c void main (S t r i n g a rgs [])
S t r i n g f i l e n a m e = "test.asc" ; / / s e t the f i l e n a m e

10 double [] a r r a y = new double [1 0 0] ; / / array to load

120 CHAPTER 3. STOCHASTIC VARIABLES

try
F i l e R e a d e r f i n = new F i l e R e a d e r (f i l e n a m e) ; / / open a F i l e s tream
Buf fe redReade r in = new Buf fe redReade r (f i n) ; / / use a b u f f e r
/ OR B u f f e r e d R e a d e r in = new B u f f e r e d R e a d e r (new Fi l eReader (f i l e n a m e)) ; /

15
S t r i n g dummy ;
in t i =0;
while ((dummy=in . r eadLine ()) ! = nul l) / / read the array

System . out . p r i n t l n (Double . va lueOf (dummy) . doub leVa lue ()) ; / / c o n v e r t to double
20

in . c l o s e () ; / / c l o s e the s tream and f i l e
catch (IOExcep t ion e)

Again you can use the convenience class FileIn from the simulation package, changing again the
lines 17-18 (or 19) by:

F i l e I n in = new F i l e I n (f i l e n a m e) ; / / open a F i l e s tream

To read data we call the readLine()method of the Reader class in line 18. We have used a shortcut
notation here to have an assignment and a if clause in one line.

Important remark:

Java always overwrites old files without notification as the default behaviour! If you want to
check if an old file already exists under this name, you have to do that by yourself. If you
want to append the new data to the old one, use the second argument when creating a new
FileWriter instance.

Using a StringBuffer In the above examples and in all the System.out.println() methods, we
make use of the concatenation operator +. So here seems to be the right place to discuss the fundamentals
of string construction a bit more in detail.

Often you are in the need of constructing a string from scratch, by putting lots of small pieces (strings)
together. Actually the same problem as concatenating strings for (formatted) output. You could always use
the Lava Rocks methods, here especially the sprintf() method explained in the next paragraph and in
section 10.3.5. But here we want to discuss how this can be implemented in core Java.

The basic feature enabling string concatenation is the concept of a StringBuffer. This is a standard
class in the java.lang package and contains methods to manipulate strings. The String class itself
(also in the java.lang package) provides basic functionality for fixed (non-changing) strings. As I al-
ready mentioned every time you use the concatenation operator, you are implicitly using theStringBuffer
methods.

If you want to create a string, which contains all the output you want to write to a file in one string, you
could use a StringBuffer. Here is the same class as above for writing a double array to a file, but this
time we use the StringBuffer to create a string containing all the output and write this string to the
file.

/ S t r i n g B u f f e r Demons t ra t ion c l a s s /

import j ava . io . ;
import j ava . u t i l . ;

5 import s i m u l a t i o n . ;

publ i c c l a s s St r ingBuf fe rDemo
publ i c s t a t i c void main (S t r i n g a rgs [])

Random rand = new Random () ;
10 S t r i n g f i l e n a m e = "testbuff.asc" ; / / s e t the f i l e n a m e

3.4. EXAMPLES 121

double [] a r r a y = new double [1 0 0] ; / / array to save
for (in t i = 0 ; i 100; i + +) / / c r e a t e a random array

a r r a y [i] = rand . nextDouble () ;
15

try
Fi l eOut out = new Fi l eOut (f i l e n a m e) ;

/ c r e a t e a S t r i n g B u f f e r wi th l e n g t h 5 0 0 0 /
20 S t r i n g B u f f e r buf f = new S t r i n g B u f f e r (5 0 0 0) ;

for (in t i = 0 ; i 100; i ++)
buf f . append (a r r a y [i]) . append ("\n") ; / / c o n c a t e n a t e

out . w r i t e (bu f f . t o S t r i n g ()) ; / / c o n v e r t to S t r i n g and w r i t e
25 out . c l o s e () ; / / c l o s e the s tream and f i l e

catch (IOExcep t ion e)

Now you have to take care of the length of the buffer yourself, but if there is not enough space left Java
automatically enlarges the buffer itself, so you do not have to care.

Using a StringBuffer is much faster and much less memory expensive than just the concatenation
operator, if you are interested in the final string. If you just use it for output it does not matter.

Stream- and StringTokenizer These two classes in the java.io and the java.lang packages re-
spectivly can be used to split up a stream of characters or a string into words. You can define the word
separator yourself, the default is a white space. It is very convenient for analyzing keyboard inputs or
sentences. You get the next word by using the nextToken()method. The StringTokenizer is very
simple and the StreamTokenizer is much more flexible and powerful.

Formatting the output in a le A common problem for writing files is the form of the produced output.
Like in the case of formatted screen output, you can use one of the C language motivated printfmethods
supplied by the Lava Rocks package (see section 1.7.1). But instead of using printf() you have to use
fprintf() this time.

If you are a (former) C programmer, you might miss the third output version of the formatting methods
sprintf(): in Lava Rocks it is also called sprintf() and works like the printf() method.

A simple example of these routines would be to save a double array, which is e.g. the x-coordinate of
a particle, and the corresponding time in a file.

/ S imple Format ted F i l e I / O Program /

import j ava . io . ; / / f o r I / O r e l e v a n t p a r t s
import j ava . u t i l . ; / / f o r Random ()

5 import s i m u l a t i o n . ; / / f o r F i l eOut ()
import l ava . c l i b . ; / / f o r f p r i n t f ()
import l ava . c l i b . s t d i o . ; / / f o r P r i n t f F o r m a t S t r i n g ()

publ i c c l a s s F i l e S a v e F o r m a t t e d
10 publ i c s t a t i c void main (S t r i n g a rgs [])

Random rand = new Random () ;
S t r i n g f i l e n a m e = "testform.asc" ; / / s e t the f i l e n a m e
double t ime ;

15 double [] a r r a y = new double [1 0 0] ; / / array to save
for (in t i = 0 ; i 100; i + +) / / c r e a t e a random array

a r r a y [i] = rand . nextDouble () ;

try

122 CHAPTER 3. STOCHASTIC VARIABLES

20 Fi l eOut out = new Fi l eOut (f i l e n a m e) ; / / open a b u f f e r e d F i l e s tream

P r i n t f F o r m a t S t r i n g fmt = new P r i n t f F o r m a t S t r i n g ("%5.2f %10.6f \n") ;
for (in t i = 0 ; i 100; i + +) / / w r i t e the array and t ime

/ / w r i t e to the o u t p u t s tream = f i l e
25 Std io . f p r i n t f (out , fmt , new Objec t [] new Double ((i / 1 0 . 0)) ,

new Double (a r r a y [i])) ;

out . c l o s e () ; / / c l o s e the s tream and f i l e
catch (IOExcep t ion e)

30

Binary Files We are now familiar with writing ASCII files, but sometimes it is necessary to write or read
files in binary format, where the values are stored in the way they are kept in memory of the computer. This
makes it faster and most of the time it produces smaller output files than using ASCII output.

The difference to other languages, where you have these two choices too, is that in Java on all platforms
the binary format is the same, when it is saved. So here you do not have to mind using binary data files on
different machines and operating systems as long as you stick to Java.

All of the basic I/O classes implement writing bytes to a stream, so you could actually use them.
But there are two classes, which already implement the conversion of the different data types to a se-
ries of bytes and write these bytes to the desired stream. The first one is the DataInputStream class
and the second one is the DataOutputStream class. They implement methods like writeDouble()
(readDouble),writeBoolean() (readBoolean()), etc. There are also methods for writing/reading
strings (write()/readLine()) in these two classes, but avoid them, because they do not convert the
byte stream correctly to character streams. Instead use the above discussed Writer and Reader classes.

As an example we look at the same example as above and write 100 double variables to a file, so the
file will be 800 bytes long (on all computers and operating systems).

/ S t r i n g B u f f e r Demons t ra t ion c l a s s /

import j ava . io . ;
import j ava . u t i l . ;

5 import s i m u l a t i o n . ;

publ i c c l a s s F i l e B i n a r y
publ i c s t a t i c void main (S t r i n g a rgs [])

Random rand = new Random () ;
10 S t r i n g f i l e n a m e = "test.bin" ; / / s e t the f i l e n a m e

double [] a r r a y = new double [1 0 0] ; / / array to save
for (in t i = 0 ; i 100; i + +) / / c r e a t e a random array

a r r a y [i] = rand . nextDouble () ;
15

/ OUTPUT /
try

DataOutpu tS t r eam out = new DataOutpu tS t r eam
(new F i l e O u t p u t S t r e a m (f i l e n a m e)) ;

20
for (in t i = 0 ; i 100; i ++)

out . wr i t eDoub le (a r r a y [i]) ;

out . c l o s e () ; / / c l o s e the s tream and f i l e
25 catch (IOExcep t ion e)

/ INPUT /

3.4. EXAMPLES 123

try
D a t a I n p u t S t r e am in = new D a t a I n p u t S t r e a m

30 (new F i l e I n p u t S t r e a m (f i l e n a m e)) ;

for (in t i = 0 ; i 100; i ++)
System . out . p r i n t l n ("mem: "+ a r r a y [i]+

" from file: "+ in . readDouble ()) ;
35

in . c l o s e () ; / / c l o s e the s tream and f i l e
catch (IOExcep t ion e)

Please note that we have used unbuffered I/O here and for your applications you should always use
buffered I/O by inserting a BufferedInputStream (BufferedOutputStream) between the two
streams used in the listing.

This paragraph was the procedure of writing files introduced in Java 1.0, the Reader and Writer
classes have been introduced in Java 1.1. There are also classes to convert the old streams to the new
reader/writer streams (classes). The InputStreamReader class converts an InputStream to a
Reader class and the OutputStreamWriter class converts an OutputStream to a Writer class.

Handling Files – The File Class Sometimes you need to delete, rename or copy files or must check if a
file is already there or you have to seek in directories. For all these problems you have to refer to the File
class (since Java 1.1) of the java.io package. Take a look at the extensive list of methods available in
this API and you will certainly find something suitable.

As a short example we want to discuss how to check if a file with a certain filename is already available
and how to handle directories and files therein.

/ F i l eCheck Demons t ra t ion c l a s s /

import j ava . io . ;

5 publ i c c l a s s Fi l eCheck
publ i c s t a t i c void main (S t r i n g a rgs [])

i f (a rgs . l e n g t h ==0)
System . out . p r i n t l n (" Please supply a filename/directory !") ;
System . e x i t (1) ;

10
S t r i n g f i l e n a m e = args [0] ; / / s e t the f i l e n a m e
F i l e f i l e = new F i l e (f i l e n a m e) ;

/ Check for e x i s t e n c e of f i l e /
15 i f (f i l e . e x i s t s () = = true)

System . out . p r i n t l n (" File "+ f i l e n a m e +" exists!") ;
e l s e

System . out . p r i n t l n (" File "+ f i l e n a m e +" does not exist!") ;
/ Check for e x i s t e n c e AND not d i r e c t o r y of a f i l e /

20 i f (f i l e . i s F i l e () = = true)
System . out . p r i n t l n (" File "+ f i l e n a m e +" exists!") ;

e l s e
System . out . p r i n t l n (" File "+ f i l e n a m e +" does not exist or "+

"is a directory!") ;
25 / Check for e x i s t e n c e AND not d i r e c t o r y of a f i l e /

i f (f i l e . i s D i r e c t o r y () = = true)
System . out . p r i n t l n (" File "+ f i l e n a m e +" is a directory!") ;
S t r i n g [] f i l e l i s t = f i l e . l i s t () ;
for (in t i = 0 ; i f i l e l i s t . l e n g t h ; i ++)

124 CHAPTER 3. STOCHASTIC VARIABLES

30 System . out . p r i n t l n (f i l e l i s t [i]) ;
e l s e

System . out . p r i n t l n (" File "+ f i l e n a m e +" is not a directory!") ;

Direct File Access Since Java 1.1 there is also a class called RandomAccessFile, which is for creat-
ing and accessing files directly. This means you can store kind of data records and position the file exactly
to a certain record instead of reading the whole file sequentially. Because in scientific applications this
kind of file access is rather seldom, we do not discuss this feature. You have to consult the online API
documentation for details.

Redirecting Standard Input and Ouput You can redirect the standard output, input or error to a file for
example or whatever you like (since Java 1.1). This is of great use, because often you run long simulations
and want to save the standard output or error to a file for later use. This can be done easily on UNIX systems,
but still you have to do it manually. In Java you just use methods from the java.lang.System class.
For example to redirect the standard output and error to a file called Standard.out of a program, use:

/ R e d i r e c t i o n of s tandard o u t p u t and error

In Java 1 . 1 : You ge t a d e p r e c i a t i o n message , which i s not i m p o r t a n t .
In Java 2 : The ”wrong ” d e p r e c i a t i o n message i s gone .

5 /
import j ava . io . ;

publ i c c l a s s R e d i r e c t S t a n d a r d
publ i c s t a t i c void main (S t r i n g a rgs [])

10
try

P r i n t S t r e a m out = new P r i n t S t r e a m
(new B u f f e r e d O u t p u t S t r e a m (new F i l e O u t p u t S t r e a m ("Standard.out"))) ;

System . se tOu t (out) ;
15 System . s e t E r r (out) ;

System . out . p r i n t l n (" This must go to the file !") ;

out . c l o s e () ; / / ! ! ! ! DO NOT FORGET
20 catch (IOExcep t ion e)

The similar method for the standard input is called System.setIn(InputStream).

Compressing Files File compression is not only important for transfering files or applets across the
internet, it is also of concern for many scientists, who have large data sets and have to write these sets to
disk for postprocessing.

Since the advent of the zlib compression library1 freely available under the GNU license, it is pretty
easy to use compression in your own programs in Fortran or C. But in Java the compression library is
already made available in the standard Java API java.util.zip. As the name suggests not only the
zlib compression algorithm used in the famous GZIP program – mostly used on UNIX systems using the
.gz ending – but also the algorithm of the famous zip program – mostly used on Windows based systems
and has the ending .zip – is available in Java directly.

The only drawback is that it is implemented on top of the old Java 1.0 I/O API and sometimes you have
to mix the old Java 1.0 and the new Java 1.1 I/O syntax.

1http://www.zlib.org

3.4. EXAMPLES 125

The most easy interface is the GZIP one, so for most applications you should use GZIP. The Zip
interface allows for multiple program compression in one file, but it is more cumbersume to use. Because
most of the time you have to compress a single stream of data, we explain only the GZIP interface.

Let us discuss the problem of saving an array to a file again, but this time we want to store them
compressed as a GZIP file.

/ Wr i t ing a compressed GZIP f i l e

again t h e r e i s a d e p r e c i a t i o n warning in Java 1 . 1 ,
which v a n i s h e s us ing Java 2 .

5 /

import j ava . u t i l . ;
import j ava . u t i l . z ip . ;
import j ava . io . ;

10 import s i m u l a t i o n . ; / / Convenience

publ i c c l a s s GZIPSaveArray
publ i c s t a t i c void main (S t r i n g a rgs [])

/ c r e a t e an array to save /
15 double [] a r r a y = new double [1 0 0 0] ;

Random rand = new Random () ;
for (in t i = 0 ; i a r r a y . l e n g t h ; i ++)

a r r a y [i]= rand . nextDouble () ;

20 / c r e a t e a b inary GZIP o u t p u t f i l e /
try

/ DataOutputStream gzou t = new DataOutputStream
(new GZIPOutputStream

(new B u f f e r e d O u t p u t S t r e a m
25 (new F i l e O u t p u t S t r e a m (” t e s t . b in . gz ”)))) ; /

/ / Convenience :
GZFileOutBin gzout = new GZFileOutBin ("test.bin.gz") ;
/ s t o r e the data in f i l e /
for (in t i = 0 ; i a r r a y . l e n g t h ; i ++)

30 gzout . wr i t eDoub le (a r r a y [i]) ;

gzout . c l o s e () ;
catch (IOExcep t ion e)

35 / c r e a t e an ASCII GZIP o u t p u t f i l e /
try

/ P r i n t S t r e a m gzou t = new P r i n t S t r e a m
(new GZIPOutputStream

(new B u f f e r e d O u t p u t S t r e a m
40 (new F i l e O u t p u t S t r e a m (” t e s t . asc . gz ”)))) ; /

/ / Convenience :
GZFi leOutAsc i i gzout = new GZFi leOutAsc i i ("test.asc.gz") ;
/ s t o r e the data in f i l e /
for (in t i = 0 ; i a r r a y . l e n g t h ; i ++)

45 gzout . p r i n t l n (a r r a y [i]) ;

gzout . c l o s e () ;
catch (IOExcep t ion e)

50

The first part stores it as a binary GZIP file test.bin.gz and you will see that it does not save

126 CHAPTER 3. STOCHASTIC VARIABLES

a lot of memory, because we are storing an array with random numbers, which is already (almost) best
represented by the binary format. The second part produces an ASCII GZIP file test.asc.gz, which
is much smaller than the uncompressed file. You can check this by using the GZIP utility and uncompress
the files.

Reading of GZIP files works the same, you just have to use the GZIPInputStream() constructor
and all the file I/O works like usual file handling.

We have also implemented convenience classes for these complicated structures to open a GZIP file for
writing and reading. They are calledGZFileOutBin() (GZFileOutAscii()) andGZFileInBin()
(GZFileInAscii()) and are used like the ones without compression. You can also take a look at the
program GZIPReadArray.java.

Reading Files into Applets Because of security reasons there is (almost) no way of reading files or
writing files from within an applet. One way of doing it would be to use the security features of Java. In this
case the browser has to tell the applet explicitly that it is allowed to do file I/O. This can be accomplished
by signing an applet, prepared in a jar file. Then the browser can check the signature and if the browser
setup allows file I/O for this signature it works.

Property files ?????
A second way would be to use the network features of Java and access a file from a FTP server, probably

the same computer the applet was coming from. Of course there is still the problem of a password to be
transmitted unsecurely to the FTP server, but it is fairly easy to setup. The code to use is a freely available
program calledLinLyn.java. We have included the code in our simulation package. The documentation
is included in the Java file or you can study the simulation package documentation.

3.4.2 Exception Handling in Java
We have made extensive use of exceptions in the last section, but now we have to understand what we did
there. Exceptions are “thrown” if an exceptional condition or error occurs in a part of a Java program. This
can be a division by zero, a file not found error or something else, which the JVM does not know how to
handle. So it is up to you to write code, which takes care of unusual conditions, which is called catching
an exception – the most common situations are already caught by the standard Java implementation.

If a piece of code produces an exception it is checked if the code block surrounding the exception
producing point is able of handling the exception. If not, the exception is propagated up to the next higher
(calling) code block (method, class, etc.). If none of the code up to the main method catches the exception,
an error message is shown on the command line and the program stops with a stacktrace showing the last
commands executed. This propagation is a great simplification, because you can catch all of the exceptions
in one place and not distributed through the whole class hierarchy.

The exception handling is located in the java.lang.Throwable class. Exceptions are objects and
there are two types: Errors and Exceptions. Errors are usually not recoverable and the program has to exit
with an error message. From exceptions you can recover, e.g. “Array out of Bounds”, “IO Exception”, etc.
The exceptions, which are automatically caught are the RuntimeExceptions.

The way of handling exceptions is easily seen in the above examples about file I/O. You put the code,
which can throw an exception in a try { } clause and use the catch() {} clause afterwards to define
what has to be done, if an exception occurs in the try block. You can have many catch blocks, each for one
special exception.

try {
// Code which throws exceptions.

} catch (java.lang.Throwable e) {
// Code which catches/recovers from exceptions.

} finally {
// Code which should be executed, no matter if an exception
// occured or not, before global catching of the exceptions
// takes place.

}

3.4. EXAMPLES 127

The java.lang.Throwable keyword in the catch clause has to be exchanged by one of the exceptions
in table 3.1.

Table 3.1 Some of the important exceptions in the java.lang.Throwable class. A detailed list is in
the API documentation. RTE means RuntimeException and therefore do not have to be catched.

Exception name RTE Ocurrence/Reason
IOException N Some IO problem (has lots of subclasses).
ArrayIndexOutOfBoundsException Y array is out of bounds
ArtihmeticException Y Integer division by zero
NullPointerException Y If a null instead of an object is used
NegativeArraySizeException Y if you trie to create a negative sized array

Instead of explicitly catching exceptions you can also just write throws IOException after the
class definition, before the actual code. Then the exceptions are handed to the next higher instance and if
there is no calling class anymore an error is displayed. With this you can propagate all your exceptions to
the parent class of all of the classes and catch the exceptions there.

If you ask how do you know what exceptions to catch (if some of the code is not written by you or is
very complex), there are only two possibilities: read the whole code and look for exeptions, which can be
thrown by it or wait for the exceptions to occur on the standard output, when running the code.

You can even use your own exceptions very easily by using the keywordthrow and your own name of
an exception. That is an easy way of handling exceptional conditions in your own code, like energy turns
zero or step size/accuracy gets too large, e.g.

try {
energy = newEnergy(energy);
if (energy == 0) {

throw new EnergyZeroException();
}

} catch (EnergyZeroException e) {
// do something about zero energy

} catch (OtherExceptions e) {
// maybe another exception to be caught

} finally {
// Always do something here, even if a certain exception
// has been thrown, but not catched yet

}

Although this seems to be a nice way to catch many special occurences in a Java program, it should
be restricted to exceptional conditions and not used as a progrsmming tool. This is because exception
throwing is a time consuming task and i not suitable for algorithmic designs.

3.4.3 The Discrete–Time Random Walk
Now we come back to the discussion of stochastic variables and take a look at a historical example.

A drunkard leaves a pub. His house is at the end of a straight street. Each time he moves he walks one
step to the direction of his home or one step in the opposite direction with equal probability. The question
we want to consider in this subsection is: What is the probability for the drunkard to be at home in r steps?

In a more formal language we want to associate with each step a stochastic variable X i (i 1 r)
assuming only the values 1 and 1 with probability 1 2 each. If he starts at n 0, all possible positions
are integers . n .. The position after r steps will be

Y X1 X2 Xr

128 CHAPTER 3. STOCHASTIC VARIABLES

It is easy to check that Y 0 and since the steps are mutually independent

Y 2 r X2 r

The above relation expresses the very typical behaviour of a diffusive process: The mean squared displace-
ment is proportional to the number of steps. To put it differently the variance of the mean of the velocity
tends to zero for long times

Y
r

2 1
r

0 as r .

In order to find the probability distribution of Y we make use of the characteristic function

GY k r GX k r 1
2

exp ik
1
2

exp ik r

The probability that Y has the value n is the coefficient of exp ink

pn r
1
2r

r
r n

2

In order to make clearer these concepts we want to write a program to simulate the random walker in
discrete time steps. The program is called rwdt and its listing can be seen below.

Listing of the program rwdt.m

% rwdt Program to s i m u l a t e a o n e d i m e n s i o n a l random walk
% with d i s c r e t e t ime s t e p s .
c l e a r ; he lp rwdt ;
n = i n p u t (’ Number of t ime s t e p s (1 0 0 0) ’) ;

5 n r e a l = i n p u t (’ Number of r e a l i z a t i o n s (1 0 0) ’) ;
% Compute s t o c h a s t i c s t e p s
x = s ign (rand (n , 1) 0 . 5) ;
y (1) = 0 ;
for i =1: n 1

10 y (i +1)= y (i)+ x (i) ;
end
p l o t (y , ’ x ’) ;
t i t l e (’ One r e a l i z a t i o n of the random walk ’) ;
x l a b e l (’ number of t ime s t e p s ’) ;

15 y l a b e l (’ d i s l o c a t i o n y ’) ;

In the program we have obviously to generate an integer valued random variable which can assume
with equal probability the values 1 and 1. One way of generating an n–dimensional vector x of such
random numbers is

x = sign(rand(n,1)-0.5)

We run the program for 1000 steps, i.e., we choose the parameter nstep 1000. Two realizations of the
one–dimensional random walk can be seen in Figs. (3.4.3) and (3.4.3).

In order to check the theoretical prediction that the mean square displacement is proportional to the
number of steps we generalize the program rwdt to allow for the generation of more realizations and
the estimation of the mean value and variance. The new program is called rwdtn and generates nreal
realizations of the stochastic process. Its listing can be seen below.

3.4. EXAMPLES 129

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60
One realization of the random walk

number of time steps

di
slo

ca
tio

n
y

Figure 3.4: One realization of a one–dimensional random walk.

0 100 200 300 400 500 600 700 800 900 1000
!40

!30

!20

!10

0

10

20
One realization of the random walk

number of time steps

di
slo

ca
tio

n
y

Figure 3.5: Another realization of a one–dimensional random walk.

130 CHAPTER 3. STOCHASTIC VARIABLES

!40 !30 !20 !10 0 10 20 30
0

20

40

60

80

100

120

140

160
Distribution of the end points of the random walk

Figure 3.6: The distribution of the end–points of the one–dimensional random walk. the program rwdtn was run for
nstep=100 and nreal=1000.

Listing of the program rwdtn.m

% rwdtn Program to s i m u l a t e a o n e d i m e n s i o n a l random walk
% with d i s c r e t e t ime s t e p s . Ensamble ave rage over n r e a l r e a l i z a t i o n s
c l e a r ; he lp rwdt ;
n = i n p u t (’ Number of t ime s t e p s (1 0 0 1 0 0 0) ’) ;

5 n r e a l = i n p u t (’ Number of r e a l i z a t i o n s (1 0 0 1 0 0 0) ’) ;
% Compute s t o c h a s t i c s t e p s
for i r =1: n r e a l
x = s ign (rand (n , 1) 0 . 5) ;
y (1) = 0 ;

10 for i =1: n 1
y (i +1)= y (i)+ x (i) ;

end
ym(i r) = y (n) ;
end

15 mean = sum (ym) / n r e a l ;
var = sum (ym . ˆ 2) / n r e a l ;
f p r i n t f (’ The mean va lue of y i s %g and the v a r i a n c e i s %g n ’ , mean , var)
f p r i n t f (’ The p r e d i c t e d v a l u e s a re : mean = 0 , v a r i a n c e = % g n ’ , n)
h i s t (ym, 2 0) ;

20 t i t l e (’ D i s t r i b u t i o n of the end p o i n t s of the random walk ’) ;

We run the program for nstep 100 and nreal 1000. The estimated mean value of 0.274 and the
estimated variance of 103.304 are in quite good agreement with the theoretical expected vales of 0 nd 100,
respectively. It is interesting to look also at the distribution of the end points of the random walk. This can
be seen in Fig. (3.4.3).

3.4. EXAMPLES 131

3.4.4 Generation of Gaussian Random Numbers
As a simple demonstration of the central limit theorem we want to generate Gaussian distributed random
numbers by adding uniformly distributed ones.

We know that uniformly distributed random numbers on the interval 0 1 have p x 1 for x 0 1 .
Then it is easy to show that

X
1
2

and

Var X
1

0

x2dx X2 1
3

1
4

1
12

Now let us consider the transformed random variable X

X X
1
2

12'

which has mean 0, variance '2, and is uniformly distributed on the interval 1
12 12' 1

12 12' Let us
now draw N such random numbers X1 XN and let us construct the new stochastic variable Z

Z
1
N

X1 XN

Then the central limit theorem states that the variable Z is a Gaussian variable with mean 0 and variance
'2.

With the help of the program cltgen we want to demonstrate that already for N 12 we get Gaussian
distributed random numbers in a very good approximation.

Listing of the program cltgen.m

% c l t g e n Program to g e n e r a t e Gauss ian d i s t r i b u t e d random numbers
c l e a r ; he lp c l t g e n ;
n = i n p u t (’ En te r number of random numbers z (1 0 0 0) ’) ;
for i = 1 : n

5 x = (rand (1 2 , 1) 0 . 5) / s q r t (1 2) ;
z (i) = sum (x) / s q r t (1 2) ;

end
h i s t (z , 2 0)
t i t l e (’ D i s t r i b u t i o n of the g e n e r a t e d Gauss ian random numbers ’) ;

In Fig. (3.4.4) we see the distribution of the Gaussian random numbers generated with the help of the
program cltgen. The number of random numbers Z was chosen to be 1000.

3.4.5 Estimation
Experimental data are random numbers! An experiment provides realizations of some random variable
X . We call an N–fold realization of X a sample of size N. It is of fundamental importance to distinguish
between the estimate for the mean and the variance made on the basis of the sample, which we will denote
by m and by s, respectively and the corresponding quantities for the (infinite) underlying population, the
ensemble.

Of course, estimates should be unbiased, i.e., for very large samples the estimate based on the sample
size N should converge to the ensemble averages.

132 CHAPTER 3. STOCHASTIC VARIABLES

!0.4 !0.3 !0.2 !0.1 0 0.1 0.2 0.3
0

20

40

60

80

100

120

140
Distribution of the generated Gaussian random numbers

Figure 3.7: The distribution of the Gaussian random numbers generate with the help of the program cltgen. The
number of random numbers drawn was chosen to be n 1000.

Mean Values

Let us consider N copies X1 XN of a random variable X and let us build the new stochastic variable

Z
1
N

X1 XN

Z is the mean value of the N realizations. Assuming that the Xi are uncorrelated we obtain for the cumulants
of Z

2n Z
1

Nn

N

i 1
2n Xi N n 12n X

In particular we have

2 Z Z X

22 Z Var Z
1
N
22 X

1
N

Var X

2n Z O N 2 for N 2

In other words the mean value of Z is a random variable with a distribution which has the same mean value
as X , but with a variance which is smaller by a factor of N. Up to terms of the order O N 2 the distribution
of Z is Gaussian.

Estimating Mean and Variance

Let us consider to have the sample x1 xN . A natural estimator of the mean value µ is the sample mean

m
1
N

N

i 1
xi

3.4. EXAMPLES 133

An estimate for the variance could, in analogy, naturally assumed to be

'̄2 1
N

N

i 1
xi m 2

Unfortunately, the above estimator is biased, because we make use of the already known m instead of the
unknown µ. As can easily be seen by adding and subtracting µ in each term in the above equation we get

'̄2 1
N

N

i 1
xi µ m µ 2

1
N

N

i 1
xi µ 2 2 m µ

1
N

N

i 1
xi µ m µ 2

1
N

N

i 1
xi µ 2 m µ 2

Now, by taking expectation values averaging over an infinity of samples of size N we have

E '̄2 E
1
N

N

i 1
xi µ 2 E m µ 2

'2 '2
m

If we assume, that there are no correlations we have '2
m '2 N, an unbiased estimate of '2 is

s2 N
N 1

'̄2 1
N 1

N

i 1
xi m 2

In computations, if the sample is large, rounding errors can be large because x i m is small. In these
cases it is convenient to use the ”corrected two–pass algorithm” for s 2

s2 1
N 1

N

i 1
xi m 2 1

N

N

i 1
xi m

2

The function of the additional second term which would be identically equal to zero if m were exact is to
correct the rounding errors of the first term Press et al. [1992a].

Condence Levels

It is important to have also a quantitative characterization of the goodness of the estimation. To this end we
assign to every estimation a certain confidence interval, which is to be chosen in such a way that the true
value lies within this interval at some predetermined level of confidence. Since we know, by virtue of the
central limit theorem, that the mean value is Gaussian distributed a criterion for the error can be directly
derived from the geometric properties of the distribution. Assuming that the mean value is m and that the
standard deviation is 'm then the probability to find the true value in the interval m ' n ' is given by
the surface under a normal probability density between µ 'm and µ 'm

Prob µ m ' n '

m '

m '

1
' 2"

exp
x m 2

2'2 0 683

Thus, in 68 3% of samples a value lying within 'm of the population mean µ would be found. Conversely,
there is 68 3% probability that the interval m 'm m 'm contains the population mean.

In general we have...

134 CHAPTER 3. STOCHASTIC VARIABLES

3.5 Beyond this Chapter

3.6 Exercises
EXERCISE 3.1 Random-Number Generator Check [Knuth, 1981]
To test the random number generator of Matlab, we calculate the first 10 moments of the distribution
generated from rand(). Compare these with the exact results for a uniform distribution.

Plot a histogram to check for a uniform distribution.
Use the Poker-Test for testing rand: Create many series of 5 random numbers between 1 and 13. Then

count the fractions of hands with two, three and four identical (numbers) cards. Compare the result with
the predictions:

hand number of ways probability
all different (no pair) 1,302,540 0.50117739
two of a kind 1,098,240 0.42256903
three of a kind 54,912 0.021128451
four of a kind 624 0.000240096
Total number of possibilities 2,598,960 1

For a rigorous check you have to use the chi-squared test for your results. If you are interested, take a look
at the book of D. Knuth.

EXERCISE 3.2 Galton Board and Pascal Triangle [Whitney, 1990]
Write a program to simulate a Galton Board on the computer.

That is a device where you introduce a ball at the top. The ball falls down towards the bottom, bouncing
off the pins to the right or left at each level. The only random effect is the bouncing at the pins at each
level. The probability of bouncing to the right or left is always 0 5. Therefore it is a simple model for a
symmetric random walk in one dimension.

How can you extract the number of ways to get to one particular box at the end of the board out of the
estimated probabilities above? What is the connection to the Pascal Triangle?

Change the program to simulate a asymmetric random walk in one dimension.

EXERCISE 3.3 The Standard Deviation
Compare the four possibilities to calculate the standard deviation (or the variance):

1. using the definition:

'2 1
N 1

N

i 1
xi x 2 x x

1
N

N

i 1
xi

2. using the moments:

'2 x2 x 2 x2 1
N

N

i 1
x2

i

3.6. EXERCISES 135

3. using the formula ([Scariano und Marlow, 1991]):

'2 1
N2

N

i 1
i j

xi x j
2

4. using the corrected two-pass formula [Press et al., 1992b]:

'2 1
N 1

N

i 1
xi x 2 1

N

N

i 1
xi x

2

The first and the second method require the computation of the first or the first and the second moments.
The third moment doesnt require any precomputed values at all and the last one uses again only the first
moment. The last one corrects for the roundoff errors, encountered when using large sample sizes. The last
one is analytically exact only if x would be exact.

Write a program including all four methods and compare the results. Find out which method the Matlab
function std uses. Check the calculation with a uniform, a normal and a Cauchy (Lorentz) distribution.
Can you find an example where the two-pass algorithm is superior to the other ones?

By the way, the variance is not the only value to estimate the spreading of a sample. Statisticians often
use the estimate

adev
1
N

N

i 1
xi x

as a measure for the distribution width around the mean value.

Exercise 2 Random variable transformation theorem: (a) Consider the linear transorm of X: Y=bX+c.
(b) the log–normal distribution. Lit. Gillespie, Am. J. Phys. 51 (1983) 520. lichkeitstheoretische Grund-
begriffe; typische Verteilungen (Poisson, Gauss, Binomial);

136 CHAPTER 3. STOCHASTIC VARIABLES

Bibliography

Brody, Thomas. The Philosophy Behind Physics. Springer–Verlag, Berlin, 1993.

Compagner, Aaldert. Definitions of randomness. Am. J. Phys., 59(8):700–705, 1991.

Feller, William. An introduction to probability theory and its applications. John Wiley & Sons, New York,
1950.

Gardiner, C.W. Handbook of Stochastic Methods. Springer Verlag, Berlin, zweite Auflage, 1990.

Gillespie, Daniel T. A theorem for physicists in the theory of random variables. Am. J. Phys., 51(6):520–
533, 1983.

Gillespie, Daniel T. Markov Processes, An introduction for physical scientists. Academic Press, inc., 1992.

Knuth, Donald E. The Art of Computer Programming, Seminumerical Algorithms, Band 2 von Computer
Science and Information Processing. Addison-Wesley, 1981.

Press, W. H., Teukolsky, S. A., Vetterlin, W. T. und Flannery, B. P. Numerical Recipes in Fortran, The Art
of Scientific Computing. Cambridge University Press, Cambridge, zweite Auflage, 1992a.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. und Flannery, B.P. Numerical Recipes in Fortran - The Art
of Scientific Computing. Cambridge University Press, zweite Auflage, 1992b.

Scariano, S.M. und Marlow, A.R. An alternate way of computing uncertainties. American Journal of
Physics, 59(12):1149, 1991.

Whitney, Charles A. Random Processes in Physical Systems, An introduction to probability-based com-
puter simulations. J. Wiley and Sons, Inc., 1990.

137

138 BIBLIOGRAPHY

Chapter 4

Data Analysis

4.1 Estimation

4.2 Simple Monte Carlo Evaluation of Integrals
It is the purpose of this subsection to introduce Monte Carlo Methods in the context of the numerical
evaluation of definite integrals. We will see in later chapters that Monte Carlo integration is the method
of choice when treating multidimensional integrals numerically. As a typical rule of thumb “classical”
deterministic methods are outperformed by Monte Carlo methods for systems with a large number of
degrees of freedom. For simplicity and to stress the basic ideas it is convenient at the moment to consider
one–dimensional definite integrals of the form

I
b

a

dx f x (4.1)

Obviously such integrals can be evaluated analytically for many integrands f x . However, there are as
well many cases for which a numerical evaluation is necessary.

Before introducing the Monte Carlo approach to numerical integration let us remind the basic “classi-
cal” deterministic approach to numerical integration. The standard approach is based upon the geometrical
interpretation of the integral (4.1) as the area under the curve of the function f x between the points a and
b. In the simplest algorithm this area (see figure) is approximated as a sum over rectangles. To this end the
x–axis is divided into n equally spaced intervals of width %x,

%x
b a

n
(4.2)

whose ends are given by

xi x0 i%x (4.3)

for i 1 n. Of course, x0 a and xn b. Thus in the so–called rectangular approximation the integral
is evaluated as

In %x
n 1

i 0
f xi (4.4)

Of course, other more accurate approximations are possible.
How can we now evaluate the above integral by drawing random numbers? The standard way is based

on a very simple idea. From the introductory course in analysis we know that the Mean Value Theorem
states that the exact value of the integral I is given by

I b a f 4 (4.5)

139

140 CHAPTER 4. DATA ANALYSIS

for some value of 4 in the interval a 4 b. f 4 represents the average value of the function f x in the
interval a b . Thus we could also write

I b a f (4.6)

where denotes the mean value. Let us draw n random numbers which are uniformly distributed in the
interval a b and let us sample the corresponding value of f x i fi. The Monte Carlo estimate In of the
integral I is then the sample mean, which is given by

In
b a

n

n

i 1
f xi (4.7)

where n is the number of trials. Amazingly the form of the above estimate is very similar to the classical
formula (4.4). The fundamental difference is that now the n points at which the function f is evaluated are
no longer equally spaced but randomly distributed.

There is also the possibility to compute the integral I stochastically with the help of the “Hit or Miss”
algorithm. The idea behind this algorithm is again very simple. To be explicit we imagine a rectangle of
height h and width b a such that the function f x lies within the rectangle (see figure; Gould, p.329).
To evaluate the integral we draw randomly pairs of uniformly distributed random numbers x i yi such that
a xi b and 0 yi h. In other words the probability to draw a point within the rectangle is given by
the inverse of the area A of the rectangle, i.e. 1 b a h. It is now evident how the area under the function
f may be estimated. The fraction of points xi yi which satisfy the condition yi f xi is an estimate of
the ratio of the integral I to the area A of the rectangle. Hence, drawing n random pairs the estimate I n of I
by this “scoring” method is given by

In A
ns
n

(4.8)

where ns is the number of “hits”, i.e., of points lying below the curve f x .
Before writing two simple programs to elucidate the above algorithms it is important to have in mind

that both estimates are affected by statistical errors. Let us consider for simplicity the standard method.
Since the f xi are random we know from the elementary theory of data analysis that an appropriate mea-
sure of the error is given by the variance which is defined by

Var f f 2 f 2 f f 2 (4.9)

Since we draw a finite number of random numbers we can estimate the mean value by using

f̂
1
n

n

i 1
f xi (4.10)

and correspondingly the estimate of the variance by using

Var f x1 f xn
1

n 1

n

i 1
f xi f̂ 2 '2

f (4.11)

The quantity ' f Var f1 fn is also called the standard deviation. In the previous expression we
have used the short–hand notation f x i fi. However, we are not interested in the error of f but in the
error of the estimate In, which is a sum over random numbers.

Repeating the simulation and hence drawing other random numbers we will get another estimate of I n.
Therefore, repeating the simulation m times we can estimate the mean of I n as

În
1
m

m

j
In j (4.12)

4.2. SIMPLE MONTE CARLO EVALUATION OF INTEGRALS 141

and the corresponding variance as

Var In 1 In m
1

m 1

m

j
In j În

2 '2
I (4.13)

We will denote the above variance also by '2
I . Of course, proceeding this way is not very practical since we

have to perform the simulation m times. A much more economical estimation of the error of the mean of I n
could be achieved by establishing a simple relation between ' I and the standard deviation of the individual
trials ' f . To this end we introduce the discrepancy - f i between the individual trial f i and its mean f . The
discrepancy -In between In and its mean value can be obtained to first order in the - f i by a simple Taylor
expansion (error propagation rules)

-In

n

i 1

3In
3 fi

- fi (4.14)

Hence, it follows from the above equation by taking the average over -I 2
n that

-I2
n

n

i j 1

32In
3 fi3 f j

- fi- f j (4.15)

It is plausible to assume, that - fi 0 for all i and that the - fi are not correlated for i j, i.e., - f i- f j
fi f j and that for i j we have - f 2

i ' f for all i it follows from the above equation that

'2
I

n

i 1

3In
3 fi

2
'2

f
1
n2 n'2

f
'2

f

n
(4.16)

and finally we have the useful relation

'I
' f

n
(4.17)

The mean error of the mean scale with 1 over the square root of the number of individual trials. The
precision of the estimate thus increases only slowly with the number of trials (remark: central limit theorem:
see Chapter 2).

Now we are in the position to write two programs to implement the above stochastic algorithms. In
order to be specific we compute the integral

I
1

0

dx 1 x2 "
4

(4.18)

In other words we want to estimate the number " by Monte Carlo methods.
We begin by the standard method. The listing of an according program can be seen below.

Listing of the program mcpi.

% mcpi Program to e s t i m a t e pi wi th the help of the
% s t a n d a r d Monte Car lo method
c l e a r ; he lp mcpi ;
n = i n p u t (’ En te r number of random numbers n (1 6 3 8 4) ’) ;

5 % Draw n random numbers
r = rand (n , 1) ;
In =0;
for i = 1 : n

142 CHAPTER 4. DATA ANALYSIS

0.5 1 1.5 2 2.5 3 3.5 4 4.5
2.95

3

3.05

3.1

3.15

3.2

3.25
MC estimation of pi

log10(nreal)

es
tim

at
e

of
 p

i

Figure 4.1: The estimation of pi for n=10,100,1000,10000. The error bars correspond to the standard deviation of the
mean of the estimate.

f (i) = s q r t (1 r (i) r (i)) ;
10 f2 (i) = f (i) ˆ 2 ;

In = In + f (i) ;
end
In = In / n ;
v a r f =0;

15 for i =1: n
v a r f = v a r f + (f (i) In) ˆ 2 ;

end
v a r f = v a r f / (n 1);
v a r i = v a r f / n ;

20 f p r i n t f (’ The MC e s t i m a t e of pi i s %g + % f n ’ , 4 In , s q r t (v a r i)) ;

We run the program for n 10 100 1000 10000. The result of the four simulations can be seen in Fig.
xy.

Next we write a program for the scoring method.

Listing of the program mcpiscore.m

% mcpisco re Program to e s t i m a t e pi by the Monte c a r l o
% s c o r i n g method
c l e a r ; he lp mcp i sco re ;

4.3. BEYOND THIS CHAPTER 143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MC estimate of pi by the Hit or Miss method

x

sq
rt(

1!
x2)

Figure 4.2: The scoring method. The continuous line represents the function 1 x2 .

n = i n p u t (’ En te r number of random p a i r s to draw (1 6 3 9 4) ’) ;
5 rx =rand (n , 1) ;

ry =rand (n , 1) ;
In =0;
for i =1: n

i f (rx (i) rx (i) + ry (i) ry (i) = 1)
10 In = In +1;

end
end
In = In / n ;
p l o t (rx , ry , ’ x ’) ;

15 t i t l e (’ MC e s t i m a t e of pi by the Hi t or Miss method ’) ;
x l a b e l (’ x ’) ;
y l a b e l (’ s q r t (1 x ˆ 2) ’) ;
hold on ;
x = [0 : 0 . 0 1 : 1] ;

20 y= s q r t (1 x . ˆ 2) ;
p l o t (x , y) ;
hold o f f ;
f p r i n t f (’ The MC e s t i m a t e of pi i s %g n ’ , 4 In)

Again we run the simulation for n=10, 100, 1000, 10000. The result of a simulation can be seen in the
next Figure.

4.3 Beyond this chapter

4.4 Exercises
Use the Matlab function rand() to solve the following problems (dont care about the quality and the
algorithm of the random number generator, for now):

144 CHAPTER 4. DATA ANALYSIS

EXERCISE 4.1 Photoabsorption [Reif, 1967]
Consider the absorption of photons passing through a gas in two dimensions. We model the gas by intro-
ducing slabs of width dx and density n (in particles per area), which absorb the incident photons. The slab
particles have a cross-sectional area of '.

So the probability of a photon to be absorbed in the slab will be (M is the number of particles in the
slab of the height dy)

P Photon absorbed
M'
dy

'ndxdy
dy

'ndx

We have assumed that there is no overlap between the cross-sections of the slab particles.
Write a program to simulate this process on the computer. Take N incident photons and watch the

number of particles left over against the slabs passed in a diagram. Do this simulation several times and
calculate the ensemble-average. What process you know is similar to this behaviour and what takes the
place of the spatial dimension in that case?

EXERCISE 4.2 Monte-Carlo Integration – Speed and Accuracy
Write a program for the calculation of the following integral:

1

0

1
1 x2 dx

1. using the hit and miss method

2. using the standard method

For both algorithms, calculate the mean and the standard deviation as discussed in the lecture. Also use
the analytical result of the integral to calculate ". Compare the accuracy of both algorithms using the ap-
proximations of ". Compare the speed of the two programs by using the cputime function in Matlab. (e.g.
type the following to time the random number generator: t=cputime;x=rand(1000);cputime-t)

To that end, create a table and a plot with the two parameters (n: the number of intervals and N: the
number of realizations) against the accuracy (use at least 5 values). To save time, you can first check for a
good n and then do the plots only against N. For the speed, plot the cputime against the achieved accuracy
for many different N.

EXERCISE 4.3 Eulers Constant using Monte-Carlo Algorithm [Mohazzabi, 1998]
Suppose throwing N darts randomly at a dart board, which has been divided into R equal size regions. The
probability of hitting one region is p 1 R. Then the probability of hitting an empty region (not already
occupied by a dart) is 1 p N. Using the binomial distribution, you can get the probability for hitting a
region with m darts. If you choose the number of regions equal to the number of darts thrown on the board,
we have p 1 N and therefore

P hitting an empty region 1
1
N

N

Because the above series converges to e for N ., we can use the following method to get an approx-
imation of the Euler constant:

(i) Throw randomly a large number of darts (say N) on a board, which has been divided into N equal
size regions.

(ii) Count the number of empty regions (call it N0).

(iii) The fraction N N0 is a good estimate of the Euler constant e.

Write a program for that algorithm and check the results. You can even use N N1, if N1 is the number
of regions with the occupancy of one dart. Check this, too. What N do you need to get the same accuracy
using the formula? And how many terms of the series for e (.

i 0 1 i! e)?

Bibliography

Mohazzabi, Pirooz. Monte-Carlo estimations of e. Amer. J. of Physics, 66(2):138, 1998.

Reif, Frederick. Statistical physics. Nummer 5 in Berkeley physics course. MacGraw-Hill, University of
California, Berkely, 1967.

145

146 BIBLIOGRAPHY

Chapter 5

Simple Sampling of Probability
Distributions Using Random Numbers

This Chapter is devoted to the following question: How can we generate sequences of random numbers
which are distributed according to some given distribution?

A simple answer to this question would be to exploit some intrinsically random physical process. For
example, one could record a sequence of the decay times of some radioactive substance and use this truly
random sequence of numbers in a Monte–Carlo simulation. Although tables of millions of such true ran-
dom numbers exist in practice this approach turns out to be very impractical. Monte–Carlo simulations
need very long sequences of random numbers, so that we have to find more efficient ways to generate
them. This requirement is satisfied by so–called pseudo–random numbers. Pseudo–random numbers are
generated numerically with the help of some simple algorithm on some computer. Consequently, they are
reproducible. This is, however, not a drawback. In fact, the reproducibility may be very useful if we want
to check our simulation algorithms.

Pseudo–random numbers are, the name already underlines it, not truly random. However, their statis-
tical properties are very similar to the statistical properties of truly random numbers. So, for all practical
purposes pseudo–random numbers appear to be random. Let us now see how such pseudo–random num-
bers can be generated.

5.0.1 A Random Number Generator
Since the concepts we just introduced are quite abstract it may be useful to see them in action with the
help of a second example. So let us write a class, which calculates random numbers uniformly distributed
between 0 and 1. To this end we write a class RandomNumber. It has three fields (variables), two of them
are defined with the final keyword.

/ A s imp le and bad random number g e n e r a t o r /

publ i c c l a s s RandomNumber
/ These are the c o n s t a n t s , d e f i n i n g (q u a l i t y of)

5 t he g e n e r a t o r /
p r i v a t e in t a =65539;
p r i v a t e long M=(in t) Math . pow (2 , 3 1) 1 ;
/ The seed has to be a c l a s s v a r i a b l e /
p r i v a t e long R1;

10
/ C o n s t r u c t o r s e t s the seed of the g e n e r a t o r /
RandomNumber (in t Seed)

R1=Seed ;

15

147

148 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

/ here we draw the nex t random number /
publ i c double nextRand ()

R1=(long) (a R1)%M;
return (double) R1 / (double)M;

20

/ s e t the parame ter s of the g e n e r a t o r /
publ i c void s e t P a r a m e t e r s (in t a , long M)

t h i s . a=a ;
25 t h i s . M=M;

/ Se t the seed /
publ i c void s e t S e e d (long seed)

t h i s . R1= seed ;
30

/ r e t u r n the parame ter s /
publ i c in t getA ()

return t h i s . a ;
publ i c long getM ()

35 return t h i s .M;
/ ge t the seed /
publ i c long ge tSeed ()

return t h i s . R1 ;

In our example, we just set the seed in the constructor and as you can see you have to supply the seed,
when you instantiate the generator. Most of the constructors don’t even need a parameter to instantiate the
object.

In the program we have made use of the Math.pow() method, which is defined in the Math class of
the standard Java API java.lang and it computes the power of the first argument to the second one (see
section 1.13.1).

Additionally we have included some routines to show how private variables can be handled. Because
there is no way for programs to access the fields of the class from the outside of this class, you have to
supply methods to read or write the fields. This is actually the way you have to write Java beans discussed
shortly in section 1.15.

Then the method nextRand() is defined and returns the next random number calculated using a
congruential method1.

Now we have to write a program (class), which uses this class to calculate the average of some random
numbers.

/ A smal l t e s t program , to t e s t the Random Number c l a s s /
publ i c c l a s s UseRandomNumber

publ i c s t a t i c void main (S t r i n g a rgs [])
f i n a l in t Seed =123;

5 f i n a l in t N=100000;
double [] numbers = new double [N] ;

/ / c r e a t e a new Random Number Generator
RandomNumber rand = new RandomNumber (Seed) ;

10
for (in t i =0; i N; i ++)

numbers [i]= rand . nextRand () ; / / draw random numbers

15 / / C a l c u l a t e the average
double avg =0;

1See later in this book for details about how to generate random numbers.

5.1. THE GENERATION OF UNIFORMLY DISTRIBUTED RANDOM NUMBERS 149

for (in t j = 0 ; j N; j ++)
avg +=numbers [j] ;

20 avg /= (double) N;

System . out . p r i n t l n (" The Mean is: "+avg) ;

The class is called UseRandomNumber and just contains the main method. First we instantiate (cre-
ate) an object of class RandomNumber. Then we create an array and in a loop we create N random
numbers using the nextRand()method of our class applied to the object we just created. The remaining
part has already been explained.

Remember that we have to put both programs in one directory called simu, because we have used the
package command. Here it was just to get you acquainted with these terms.

5.1 The Generation of Uniformly Distributed Random Numbers
We will begin with the generation of uniformly distributed random numbers on the interval 0 1 . In the
following we will often omit the prefix pseudo.

The best known algorithm for the generation of uniformly distributed random numbers is the linear
congruential method, which given an initial integer ”seed” value I 1 produces random integers recursively
using the formula

In 1 aIn c mod M

where a, c, and M are integer constants which have to be chosen appropriately. The randomness of the
above algorithm results from the fact that after some multiplications with a the result exceeds M and is
consequently truncated. Since the integers In lie between 1 and M a random number R uniformly distributed
between 0 and 1 is obtained as

R
In
M

Unfortunately, MATLAB does not have integer arithmetic so the above algorithm has to be implemented
using the rem (remainder) function instead of the modulo function. A corresponding code could be

I(n+1) = floor(rem(a*I(n) + c,M)).

The MATLAB function oor rounds towards minus infinity. In order to get familiar with this algorithm
we want to generate a sequence of pseudo–random numbers for the following parameters: we choose the
multiplier to be a 5, the increment c 3, and the modulo M 8. Obviously the longest period of random
numbers will have the length 8. The generation of the random sequences will be achieved with the program
trandom1.

Listing of the program trandom1.m

% trandom1 Program to d e m o n s t r a t e the g e n e r a t i o n of random numbers
% us ing the l i n e a r c o n g r u e n t i a l method
c l e a r ; he lp trandom1 % c l e a r the memory and p r i n t heade r
seed = i n p u t (’ En te r the seed (1) ’) ;

5 m = i n p u t (’ En te r the modulus (8) ’) ;
a = i n p u t (’ En te r the m u l t i p l i e r (5) ’) ;
c = i n p u t (’ En te r the i n c r e m e n t (1 = c 7) ’) ;
% Set s t a r t i n g va lue
R (1) = seed ;

150 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7
The series of generated random numbers

Term, i

Va
lu

e

Figure 5.1: Successive values in a series of random numbers generated for a=5, c=3, M=8. Note that the even numbers
are always one less then the odd ones!

10 % Genera t e v e c t o r of 2 m random numbers
for j =1:2 m

R(j +1) = f l o o r (rem (a R(j)+ c , m)) ;
end
%R=R/M;

15 d i sp (’ The g e n e r a t e d s e r i e s i s : ’)
d i sp (R)
p l o t (R , ’ x ’)
t i t l e (’ The s e r i e s of g e n e r a t e d random numbers ’) ;
x l a b e l (’ Term , i ’) ; y l a b e l (’ Value ’) ;

Run with the above parameters the program generates the sequence

1 0 3 2 5 4 7 6 1 0 3 2

which has also been plotted in Fig. (5.1). It might be instructive to run the program keeping the multiplier a
and the modulo M fixed while changing the increment c. The result of these runs are summarized in Table
5.1.

It is evident that a wrong choice of the constants leads to a very poor random sequence.
It can be shown Knuth [1981] that in the case c 0 the full period, 1 to M 1 can be achieved by

choosing M as a prime number and for a, a primitive element modulo m, i.e., for all prime divisors, p, of
M 1 ,

a M 1 p mod M 1

For the case of c 0 the full period is obtained if the following three conditions are satisfied:
(i) c and M are relatively prime,
(ii) a mod p 1 for each prime factor p of M,
(iii) a mod 4 1 if 4 divides M.
It is evident that the greater the modulus the longer the period. For example the MATLAB random

number generating function uses

a 16807;c 0;M 231 1

5.1. THE GENERATION OF UNIFORMLY DISTRIBUTED RANDOM NUMBERS 151

Table 5.1 Series of random numbers for the linear congruential generator of the form I n 1 5In c
mod 8

c In Period
1 1,6,7,4,5,2,3,0 8
2 1,7,5,3,1,7,5,3 4

4,6,0,2,4,6,0,2 4
3 1,0,3,2,5,4,7,6 8
4 1,1,1,1,1,1,1,1 1

2,6,2,6,2,6,2,6 2
3,3,3,3,3,3,3,3 1
4,0,4,0,4,0,4,0 2
5,5,5,5,5,5,5,5 1
7,7,7,7,7,7,7,7 1

5 1,2,7,0,5,6,3,4 1
6 1,3,5,7,1,3,5,7 4

2,0,6,4,2,0,6,4 4
7 1,4,3,6,5,0,7,2 8

to generate equally distributed random numbers in the interval 0 1 This chioce has been suggested by
Park and Miller Press et al. [1992a]. The period of the generator is 2 31 2 2 1 109. Another popular
random number generator uses

a 65539;M 231 1;c 0

and will be used in the following program trandom2.m. There we will draw 3000 random numbers using
the linear congruential method. In the program we will check the quality of the generator by plotting the
1D, 2D, and 3D distribution of the pseudo–random numbers. The results of the test can be seen in Figs.
(5.1), (5.1), (5.1), and (5.1).

Listing of the program trandom2.m

Listing of the function random1

f u n c t i o n R = random1 (n)
% f u n c t i o n to g e n e r a t e random numbers
a =65539;
M=2ˆ (31) 1 ;

5 R(1) = 1 2 3 4 5 6 7 8 ;
for j =1: n 1
% for i =1: n 1

R(j +1) = f l o o r (rem (a R(j) , M)) ;
%end

10 end
R=R/M;

The figures clearly reveal that the generator is not perfect. In the exercise we will learn that choosing
a 16807, the minimal standard generator, significantly improves the performance. The performance
of this minimal standard generator can be increased by shuffling the output to remove low–order serial
correlations (EXERCISE!!!!) (ran1 of Numerical Recipes).

In the book by Press et al. other ”Quick and Dirty” linear congruential generators are presented. Fur-
themore, it is important to remark that serial correlations can be broken up by combining two linear con-
gruential generators.

152 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
random numbers

i

R(
i)

Figure 5.2: Successive values in a series of 3000 random numbers generated for a 65539, c 0, M 231 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

random number

1D distribution: Histogram

Figure 5.3: Histogram for a series of 3000 random numbers generated for a 65539, c 0, M 231 1.

5.1. THE GENERATION OF UNIFORMLY DISTRIBUTED RANDOM NUMBERS 153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2d correlation between successive random numbers

R(i)

R(
i+

1)

Figure 5.4: Correlation between successive values in a series of 3000 random numbers generated for a 65539, c 0,
M 231 1.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

R(i)

3D correlation between successive random numbers

R(i+1)

R(
i+

2)

Figure 5.5: Correlation between successive values R i R i 1 R i 2 in a series of 3000 random numbers gener-
ated for a 65539 c 0 M 231 1.

154 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

There are also other algorithms for the generation of random numbers: Shift–register generators (Lit:
Kirkpatrick and Stoll), Fibonacci generators (lit: Knuth, James) or quasi–random numbers and we refer
the reader to the original literature. Special random number generators for parallel computers has been
developed.

5.2 The Transfomation Method: Invertible Distributions
In the previous section we have learned how to generate random numbers with a uniform probability
distribution, so that the probability p x dx to generate a random number between x and x dx is given by

p x dx dx 0 x 1
0 otherwise

With the help of the random variable transformation theorem it is easy to transform uniform deviates into
random numbers which are distributed according to invertible, one–to–one, distributions. We know from
Chap. 2 that if we take a uniform deviate x and then transform it to a new variable y x the probability
distribution of y is given by

p y p x
dx
dy

(5.1)

We want to derive a transformation which generates random numbers which are distributed according to a
given p y . Since x is uniformly distributed the above equation reduces to

dx
dy

p y (5.2)

which can be easily integrated

x y P y
y

p y dy

Hence, the transformation we are looking for is given by the inverse of P y . Thus, a random variable Y
with density p y can be generated by uniform deviates through

Y Y X P 1 X

In the following we will apply this method to generate exponentially and Gaussian distributed random
numbers.

5.2.1 Exponential Distribution
Let p y wexp wy for positive y. It follows from Eq. (5.2) that

dx
dy

wexp wy

Therefore we get immediately

x y
.

0

dy wexp wy 1 exp wy

The above expression is easily inverted

y
1
w

ln 1 x

5.2. THE TRANSFOMATION METHOD: INVERTIBLE DISTRIBUTIONS 155

and since x is equally distributed in 0 1 we can generate exponentially distributed random numbers with
the help of the formula

y
1
w

ln x (5.3)

It is clear that in MATLAB such an exponentially distributed random number Y can be generated with the
help of the following line of code

y = - log(rand(1))/w

With the help of the simple program expdistr we want to generate 1000 exponentially distributed random
numbers and compare them with the prescribed distribution. We check also the mean value and variance
and compare them with the analytical expectation values.

Listing of the program expdistr.m

% e x p d i s t r Program to g e n e r a t e e x p o n e n t i a l l y d i s t r i b u t e d
% random numbers wi th the t r a n s f o r m a t i o n method
c l e a r ; he lp e x p d i s t r ;
lambda = i n p u t (’ En te r mean va lue of the d i s t r i b u t i o n (1) ’) ;

5 n = i n p u t (’ En te r number of random numbers (1 0 0 0) ’) ;
% g e n e r a t e n e x p o n e n t i a l l y d i s t r i b u t e d random numbers
x = rand (n , 1) ;
for i =1: n

y (i) = lambda log (x (i)) ;
10 end

% e v a l u a t e mean and v a r i a n c e
mean = sum (y) / n ;
var = sum (y . ˆ 2 mean) / (n 1);
xa = [0 . 5 : 1 : 1 0 . 5] ;

15 [m, xout] = h i s t (y , xa) ;
bar (xout , m/ n) ;
t i t l e (’ His togram of e x p o n e n t i a l l y d i s t r i b u t e d random numbers ’) ;
x l a b e l (’ y ’) ; y l a b e l (’ p (y) ’) ;
hold on ;

20 for i =1:11
pexp (i) = exp ((xout (i)) / lambda) / lambda ;

end
p l o t (xout , pexp) ;
hold o f f ;

25 f p r i n t f (’ The e s i t m a t e d mean i s %g (e x a c t % f) n ’ , mean , lambda) ;
f p r i n t f (’ The e s t i m a t e d v a r i a n c e i s %g (e x a c t % f) n ’ , var , lambda ˆ 2) ;

In Fig. (5.2.1) we see the histogram of 1000 drawn exponentially distributed random numbers.

5.2.2 Gaussian Distributed Random Numbers
Gaussian distributed random numbers can be obtained with the help of the multidimensional random vari-
able transformation theorem. Let us consider the transformation

y1 2 log x1 cos 2"x2 (5.4)
y2 2 log x1 sin 2"x2 (5.5)

where X1 and X2 are uniformly distributed random numbers on the interval 0 1 . Equivalently we can write

x1 exp
1
2

y2
1 y2

2

x2
1

2"
arctan

y1
y2

156 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Histogram of exponentially distributed random numbers

y

p(
y)

Figure 5.6: Histogram of 1000 exponentially distributed random numbers with mean 1 generated according to the
transformation method. The continuous line represents the expected exponential distribution.

it is now straightforward to show that the Jacobian determinant reads

3 x1 x2
3 y1 y2

1
2"

exp y2
1 2

1
2"

exp y2
2 2

The right hand side of the above equation corresponds to the product of two independent Gaussian distri-
butions. Thus it follows from the multidimensional version of the random variable transformation theorem
for invertible distributions that the two random number generated according to Eqs. (5.4) and (5.5) are
Gaussian distributed. This algorithm which allows the generation of two Gaussian random numbers from
two uniformly distributed ones is called the Box–Muller method.

It is easy to implement the above algorithm in MATLAB. This is done in the program gaussdistr.m
which generates gaussian random numbers with mean value mu and variance sigma.

Listing of the program gaussdistr.m

% g a u s s d i s t r Program to g e n e r a t e Gauss ian d i s t r i b u t e d
% random numbers wi th the Box Muller method
c l e a r ; he lp g a u s s d i s t r ;
mu = i n p u t (’ En te r mean va lue of the d i s t r i b u t i o n (0) ’) ;

5 sigma = i n p u t (’ En te r v a r i a n c e of the d i s t r i b u t i o n (1) ’) ;
n = i n p u t (’ En te r number of random numbers (1 0 0 0) ’) ;
% g e n e r a t e 2 n Gauss ian d i s t r i b u t e d random numbers
x1 = rand (n , 1) ;
x2 = rand (n ,1) 2 pi ;

10 for i =1: n
s l = sigma s q r t (2 log (x1 (i))) ;
y1 (i) = s l cos (x2 (i)) + mu;
y2 (i) = s l s in (x2 (i)) + mu;

end
15 % e v a l u a t e mean and v a r i a n c e

mean = sum (y1) / n ;

5.3. THE ACCEPTANCE–REJECTION TECHNIQUE 157

!15 !10 !5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25
Histogram of Gaussian distributed random numbers

y

p(
y)

Figure 5.7: Histogram of 1000 Gaussian distributed random numbers with mean 0 and variance 2 generated according
to the Box-Muller method. The continuous line represents the expected Gaussian density.

var = sum ((y1 mean) . ˆ 2) / (n 1);
xa = [1 0 : 1 : 1 0] ;
[m, xout] = h i s t (y1 , xa) ;

20 bar (xout , m/ n) ;
t i t l e (’ His togram of Gauss ian d i s t r i b u t e d random numbers ’) ;
x l a b e l (’ y ’) ; y l a b e l (’ p (y) ’) ;
hold on ;
for i =1: l e n g t h (xa)

25 pgauss (i) = exp ((xout (i) mu) (xout (i) mu) / (2 sigma ˆ 2)) ;
pgauss (i) = pgauss (i) / (s q r t (2 pi) sigma) ;

end
p l o t (xout , pgauss) ;
hold o f f ;

30 f p r i n t f (’ The e s i t m a t e d mean i s %g (e x a c t % f) n ’ , mean , mu) ;
f p r i n t f (’ The e s t i m a t e d v a r i a n c e i s %g (e x a c t % f) n ’ , var , sigma ˆ 2) ;

The corresponding histogram obtained by running the program for n=1000, mu=0, sigma=2 can be
seen in Fig. (5.2.2).

Let us end this subsection by mentioning that normal distributed random numbers can be generated in
MATLAB with the help of the function randn.

5.3 The Acceptance–Rejection Technique
The acceptance–rejection technique is a method of wide applicability. In its original formulation it is due to
von–Neumann. The basic idea is to sample a random number from some known and appropriate probability
distribution and to perform a test to determine whether or not it is acceptable for use or not. We follow the
approach by Rubinstein Rubinstein [1981a] but consider for simplicity only the one–dimensional case.

Let us assume that the stochastic variable X is defined on the interval a x b and is distributed
according to the probability density p x . We write this probability distribution as

p x Cd x q x

158 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

where C is a normalization constant C 1, q x is also a probability distribution and 0 d x 1. The
probability distribution q x is the importance function, and we are supposed to know how to generate
random variates distributed according to it.

The acceptance–rejection method works as follows. We generate two random variates: 5 is uniformly
distributed on the interval 0 1 and Y is distributed according to q y . Then we test whether or nor the
equality

5 d y

holds or not. If the condition 5 d y is satisfied, then y is accepted as a random variate distributed
according to p x . If the condition is not satisfied, the pair 5 y is rejected, and we have to try again.

It is easy to demonstrate that the above method works. Let us apply Bayes’formula to the conditional
probability p x 5 d y :

py x 5 d y
Prob 5 d y Y x q x

Prob 5 d y
(5.6)

It is straightforward to compute

Prob 5 d y Y x Prob 5 d x d x

Prob 5 d y Prob 5 d Y Y x q x dx

q x d x dx dx
p x
C

1
C

Inserting into (5.6) we obtain finally

py x 5 d y Cd x q x p x

which completes the proof.
The above discussion also makes evident the role of the constant C. The efficiency of the method

depends on the inequality 5 d y , for independent trials the probability of success is given by 1 C. C
represents the average number of passes which must be made with the algorithm in order to select a variate.
It is clear, that in order for the method to be efficient it must be easy to generate random numbers according
to q x and the efficiency should be large, i.e., C should be close to one.

In the original formulation by von–Neumann the comparison function was simply chosen to be the
uniform distribution. If M is the maximum of p x then we choose

q x
1

b a

d x
p x
M

C M b a

The von–Neumann algorithm then simply reads
1. Generate !1 and !2 uniformly distributed in 0 1 .
2. Evaluate Y a !2 b a .
3. If !1 p y M then Y is a variate distributed according to p x .
4. Go to 1.

As a simple example we want to generate random numbers on 0 1 distributed according to

p x 3x2; 0 x 1

We choose C 3 and apply the von–Neumann algorithm.
1. Generate !1 and !2 uniformly distributed in 0 1 .
2. Test the inequality !1 !2

2
3. If the equality holds we accept !2 as a random number generated according to p x .

5.4. VARIANCE REDUCTION: IMPORTANCE SAMPLING 159

Listing of the program neumann.m

% neumann a c c e p t a n c e r e j e c t i o n method :
% the von Neumann a l g o r i t h m ;
% p (x) = 3 x ˆ 2 .
c l e a r ; he lp neumann

5 n = i n p u t (’ En te r number of random numbers (1 0 0 0) ’) ;
% g e n e r a t e uni form d i s t r i b u t e d v a r i a t e s chi1 and chi2
chi1 = rand (n , 1) ;
chi2 = rand (n , 1) ;
j =1;

10 for i =1: n
i f (chi1 (i) = chi2 (i) chi2 (i))

y (j)= chi2 (i) ;
j = j +1;

end
15 end

[h , xout] = h i s t (y , 2 0) ;
sh =sum (h) ;
bar (xout , h / sh 20) ;
t i t l e (’ His togram : a c c e p t a n c e r e j e c t i o n method ’) ;

20 x l a b e l (’ x ’) ;
y l a b e l (’ p (x) ’) ;
hold on ;
for i =1:20

p (i) = 3 (i 1) (i 1) / 2 0 / 2 0 ;
25 end

p l o t (xout , p) ;
hold o f f ;
f p r i n t f (’ The e f f i c i e n c y i s %f (e x a c t e f f i c i e n c y = 1 / C= 1 / 3) n ’ , sh / n) ;

The above algorithm has been implemented in MATLAB in the program neumann.m, which we run
for n 1000 and n 5000. The result of the latter run can be seen in Fig. (5.3). In the program we count
the number of successful trials. The ratio of successful trials to the total number of drawn random pairs for
the run shown is 0.3328, which is in good agreement with the expected theoretical value of 1 C 1 3.

5.4 Variance Reduction: Importance Sampling
In this section we will see how the Monte–Carlo integration algorithms can considerably be improved. The
importance sampling technique will be our first encounter with a so–called variance reduction technique.
We already know that the estimation of integrals by the Monte–Carlo method is affected with errors. The
basic idea of variance reduction techniques is to use known information about the problem in order to
improve the efficiency of the simulation. Obviously, if nothing is known about the problem no variance
reduction can be achieved. On the other extreme, if we have full knowledge the variance will be reduced to
zero, and there will be no need for a simulation. It is always important to be aware of what is known about
the system.

We consider again the problem of estimating the integral

I dx f x (5.7)

The central idea of importance sampling is to select random variates from regions in proportion to the
importance these regions have to the integral we want to evaluate, instead of spreading them evenly. To
this end we rewrite the integral (5.7) in the form

I
f x
p x

p x dx
f x
p x

160 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
Histogram: acceptance rejection method

x

p(
x)

Figure 5.8: Histogram of 5000 random numbers distributed according to p x 3x2 generated with the von–Neumann
acceptance–rejection technique. The continuous line represents the exact density p x .

where X is a random variable with probability density p x . P x is called the importance sampling distri-
bution. Since the integral is obviously the expectation value of the function f x p x it can be estimated
using N random numbers Xi distributed according to p x

ÎN
1
N

N

i 1

f xi
p xi

The function p x has to be chosen in such a way that the variance of f x p x

Var
f x
p x

I 2
b

a

f 2 x
p x

dx I2

is minimal. If f x 0 it follows from the above equation that Var 0 if we choose p x as p x f x I.
Unfortunately, this choice implies that we know already the integral we want to solve. In general, the
variance can essentially be reduced if p x is chosen to resemble f x .

As an example we consider the integral

I
1

0

dxexp x2 (5.8)

In the first two columns of table (5.4) we show the results of two estimates of the above integral with the
help of the standard Monte–Carlo integration. In the third column we show the results of the importance
sampling integration.

The simulation was performed with the help of the program mciis.m whose listing can be seen below.

Listing of the program mciis.m

5.4. VARIANCE REDUCTION: IMPORTANCE SAMPLING 161

Table 5.2 Monte–Carlo estimates of the integral (5.8) using the standard method p x 1 and the impor-
tance sampling method p x aexp x

p x 1 p x 1 p x aexp x
N 1000 16384 1000
Î 0.736087 0.74504 0.748340
'ÎN 0.00131 0.000317 9 65 10 5

CPU time/trial (s) 0.000660 0.003837 0.000860
total CPU time (s) 0.66 62.86 0.86

% m c i i s Monte Car lo I n t e g r a t i o n
% Impor t ance sampl ing
c l e a r ; he lp m c i i s
N= i n p u t (’ En te r number of t r i a l s (1 0 0 0) ’) ;

5 t0 = cput ime ;
% E v a l u a t e n o r m a l i z a t i o n c o n s t a n t of impor t ance sampl ing d i s t r i b u t i o n
a = 1 exp (1) ;
% Draw N e x p o n e n t i a l l y d i s t r i b u t e d random numbers on (0 , 1)
r = rand (N, 1) ;

10 for i =1: N
x (i) = log (1 r (i) a) ;

end
% E v a l u a t e i n t e g r a l
sum func =0;

15 sum var =0;
for i =1: N

p=exp (x (i)) / a ;
func =exp (x (i) x (i)) ;
sum func =sum func +func / p ;

20 sum var = sum var + func func / p / p ;
end
i n t e g r a l =sum func / N;
v a r i a n c e = sum var / N i n t e g r a l ˆ 2 ;
v a r i a n c e = v a r i a n c e / s q r t (N) ;

25 t1 = cput ime ;
f p r i n t f (’ The e s t i m a t e d i n t e g r a l i s % f + %g n ’ , i n t e g r a l , v a r i a n c e) ;
f p r i n t f (’ CPU time per t r i a l i s % f n ’ , (t1 t0) / N) ;
f p r i n t f (’ To ta l CPU time : % f n ’ , t1 t0) ;

The importance sampling function is chosen to be p x aexp x , where the constant a is chosen
such that p x is normalized on the unit interval. Accordingly the N random numbers X i distributed ac-
cording to p x are generated with the help of the inversion method. Since

P x
x

0

dx p x a 1 exp 1

the exponentially distributed random numbers on the interval 0 1 are generated according to

X log 1 ! a

where the ! are uniformly distributed random numbers on the interval 0 1 . The generation of these
random numbers is performed in lines x to y.

It is important to remark that although the computation time per trial is larger in the importance sam-
pling technique, the total CPU time is smaller compared to the standard Monte Carlo algorithm, because a
much smaller number of realizations is required in order to achieve a desired accuracy (variance).

162 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

5.5 Sampling of Polymer Congurations
In this section we want to apply the importance sampling technique to one simple problem of polymer
physics.

5.5.1 Ideal Chains
One of the simplest idealizations of a flexible polymer chain consists in replacing it by a random walk on a
lattice de Gennes [1979]; Doi und Edwards [1986]. The walk is a succession of steps starting from one end
and reaching an arbitrary end point. The analogy between the random walk and the polymer stems from
the fact that one regards the realizations of the random walk as a possible configuration of the polymer
chain. We will start by generalizing the one–dimensional random walk discussed in the previous chapter.

For simplicity, we consider cubic lattices in d dimensions, i.e. a square lattice for d 2 and a cubic
lattice for d 3. The stepping probability p from a given site to one of its q 2d neighbors is assumed to
equal p 1 q. The number q is called the coordination number of the lattice. The length of one step will
be l. The analogy between random walks and polymer chains is very helpful since it allows to investigate
global properties of the polymer.

Let us assume that the random walk begins at R0 and that it ends after N steps at RN . A typical global
property of interest in polymer physics is the end–to–end vector, which is given by

R RN R0

Of course, the end–to–end vector is the sum of the statistically independent increment vectors

ri Ri Ri 1 for i 1 N

i.e.,

R
N

i 1
ri

It is easy to generalize the results obtained previously for the one–dimensional random walk to d dimen-
sions. It is clear, that the projections of the d dimensional N step random walk onto the Cartesian axes are
again one–dimensional random walks of, on average, N d steps. These walks are statistically independent,
so that the probability density p R for the displacement of the d–dimensional random walk of N steps is
simply obtained as the product of d one–dimensional random walks of N d steps each

P R N P R1 N d P R2 N d P Rd N d

which inserting the Gaussian density for P R1 N d from Chap. 2 Eq. (3.60) is immediately found to be a
d–dimensional Gaussian probability density

P R N 3 2"Nl2 3 2 exp
3R2

2Nl2

Obviously, the mean of the end–to–end distance is zero. The mean squared end–to–end distance, i.e. the
variance of R, is (see Chap. 2)

R2 Nl2 (5.9)

which is again linear in N.
It is also instructive to look at the fluctuations of R2,

%R
R4 R2 2

R2
2
3

5.5. SAMPLING OF POLYMER CONFIGURATIONS 163

We immediately recognize that the variance %R does not decrease with increasing system size. Usually, in
statistical physics fluctuations decrease with increasing number of degrees of freedom. Accordingly, the
difference between expectation values and the true ensemble average scales with 1 N. Such a property
is called self–averaging. It follows from the above discussion that random walks do not have the self–
averaging property.

At this stage it might be appropriate to introduce the concept of universality, which allows the classi-
fication of the critical behaviour of a large variety of systems in classes with the same universality. The
simple properties of the random walk allow the introduction of the Gaussian universality class. Denoting
by R R2 the size of the polymer, we can write Eq. (5.9) in the form

R N)l

where for the simple random walk) 1 2 and R is independent of the dimensionality of the lattice. As
we will see soon, for other random walks the critical exponent) strongly depends on the dimension of the
lattice.

Since we want to sample with the help of the following program configurations of ideal polymers it is
important to consider the number of possible configurations. To this end we compute the number Z N of
distinct random walks. Since each lattice site has q neighbors, the number of distinct possibilities at each
step is q and the total number of configurations is

ZN qN (5.10)

In order to demonstrate the above theoretical results we want to simulate a random walk on a two
dimensional lattice. The listing can be seen below.

Listing of the program rw 2d.m

%%% Symmetric
%%% 2D Random Walk for one p a r t i c l e
%%%

5 hold o f f ;
c lg ;
c l e a r ;

c o l o r =[’ b ’ , ’ k ’ , ’ y ’ , ’ g ’ , ’ m’ , ’ c ’] ;
10 r e a l i z a t i o n s =10;

N= i n p u t (’ How many s t e p s (1 0 0 0) ? ’) ;
%%p= i n p u t (’ P r o b a b i l i t y for a s t e p to the r i g h t (0 . 5) ? ’) ;
s t e p = i n p u t (’ Use f i x e d s t e p s i z e of 1 (o t h e r w i s e random s t e p s i z e in [0 , 1]) (1) ? ’) ;

15 s t e p s i z e =ones (N 1 ,1) ;
i f (s t e p ==1)

d i sp (’ S t e p s i z e i s 1 ! ’) ;
s tep max =1;

e l s e
20 s tep max = i n p u t (’ Maximum s t e p s i z e (1) ? ’) ;

d i sp (’ S t e p s i z e i s random betweeen [0 , 1] ! ’) ;
end

t = cput ime ;
25 % l e t i t walk . . .

% S t a r t p o s i t i o n s and a r r a y d e f i n i t i o n
pos (1 : r e a l i z a t i o n s , 1 : N, 1 : 2) = 0 ;

164 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

30 % do t he r e a l i z a t i o n s
for j =1: r e a l i z a t i o n s ,

% draw a l l random numbers a t once
% between 1 and 4
random = f l o o r (rand (N 1 , 1) 3 . 9 9 9) + 1 ;

35 i f (s t e p ==0)
s t e p s i z e = step max . rand (N 1 ,1) ;

end

% do t he s t e p s
40 for i =2: N,

%% r i g h t
i f (random (i 1)==1)

pos (j , i , 1)= pos (j , i 1,1)+ s t e p s i z e (i 1);
pos (j , i , 2)= pos (j , i 1 ,2) ;

45 %% l e f t
e l s e i f (random (i 1)==2)

pos (j , i , 1)= pos (j , i 1,1) s t e p s i z e (i 1);
pos (j , i , 2)= pos (j , i 1 ,2) ;
%% up

50 e l s e i f (random (i 1)==3)
pos (j , i , 2)= pos (j , i 1,2)+ s t e p s i z e (i 1);
pos (j , i , 1)= pos (j , i 1 ,1) ;
%% down

e l s e i f (random (i 1)==4)
55 pos (j , i , 2)= pos (j , i 1,2) s t e p s i z e (i 1);

pos (j , i , 1)= pos (j , i 1 ,1) ;
end

end

60 end
% p l o t the e l a p s e d CPU time
t = cput ime t ;
d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t)) ;

65 % p l o t the pa ths of the walker
hold on ;
a x i s squa re ;
maximum=max (max (max (abs (max (pos)) , abs (min (pos))))) ;
a x i s ([maximum maximum maximum maximum]) ;

70 for j =1: r e a l i z a t i o n s
p l o t (pos (j , : , 1) , pos (j , : , 2) , c o l o r (1+ rem (j , 6))) ;

end
% p l o t zero a x i s
p l o t ([maximum maximum] , [0 0] , ’ r ’) ;

75 p l o t ([0 0] , [maximum maximum] , ’ r ’) ;

A few comments to the listing seem appropriate. The position of the random walker is stored in the
matrix pos(1:realizations,1:N,1:2), where realizations denotes the number of realizations, N is the num-
ber of steps, and the last argument records the position along the x and the y axis. In order to generate a
realization (lines 31 to 58) we draw at once N random numbers which are equally distributed between the
four discrete values 1,2,3, and 4, which number the four possible neighbors of the lattice point on which the
walker is resting. Then within a for loop over all steps we select at random the new position of the walker
with the help of the if-elseif-end construction in lines 42 to 57. These procedure is repeated realizations
times. Finally, we plot the paths of the walker. Since we want to plot all paths in the same square plot
(in MATLAB this can be done with the help of the command axis square it is necessary to find out the
maximal distance reached by the walker in the 10 realizations. This is done in line 68 and the length of the
axis is fixed in line 69 with the command

5.5. SAMPLING OF POLYMER CONFIGURATIONS 165

!40 !20 0 20 40

!40

!30

!20

!10

0

10

20

30

40

2d random walk: 10 realizations

x

y

Figure 5.9: Ten realizations of a two–dimensional random walk on a square lattice.

axis([-maximum maximum -maximum maximum]);

With the help of the hold on hold off construction we plot ten realizations on the same figure.
We run the program and generate 10 realizations of a random walk of 1000 steps lengths. These

realizations can be seen in Fig. (5.5.1). It is now left to the exercises to investigate the end–to–distance
of the ideal polymer chain in order to check whether the simulation is in agreement with the Gaussian
polymer theory.

5.5.2 Real Chains
In Fig. (5.5.1) we see that the realizations of the random walk, i.e. the polymer chains intersect themselves.
This is of course an unphysical behaviour since real polymer chains do not intersect. In order to simulate
real chains on a lattice we still can represent the polymer as a random walk, but now the walk can not
intersect itself. Such random walks are called self–avoiding random walks (SAW). In other words the
SAW has the constraint that the walker cannot return to sites he already visited. As a natural consequence
SAWs are more extended then the usual random walks. Of course, also the universal properties of the SAW
are different from those of the Gaussian random walk. In particular the exponent) strongly depends on
the dimension of the lattice. It is clear that in d 1 a SAW is simply a rigid rod and we have) 1. For
increasing dimension of the lattice) decreases as the self–avoiding constraint becomes less important. For
large dimensions the difference between random walk and SAW vanishes. In fact for the critical dimension
dc 4 (and for higher dimensions) random walk and SAW have the same universal properties de Gennes
[1979]; Raposo et al. [1991].

In general it is not possible to evaluate the critical exponent) analytically for the SAW. This is possible
only for d 1 d 2 and d 4. However, a simple mean field theory, the Flory theory, makes the following
predictions

)
3 2 d for 1 d 4

1 2 for d 4

As we will see this theoretical predictions agree well with the stochastic simulations (!!!!!).

166 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

The total number of self–avoiding random walks of N steps has (for large N) the following asymptotic
form

ZN constant N& 1qN
eff

The second factor in the above scaling law reminds us of the expression (5.10) which holds for ideal random
walks. The effective coordination number is smaller then the coordination number q, e.g. in 3 dimensions
on a cubic lattice we have q 6 and qeff 4 68 and in two dimensions on a squared lattice we have q 4
and qeff 2 63 Kremer und Binder [1988]. The first factor N & 1 is called the enhancement factor. The
universal exponent & depends on the dimension of the lattice

&
7 6 for d 3
4 3 for d 2

Note that for d 1 we have ZN 2, independently of N. Hence, qeff 1 and & 1.
As an application of the sampling techniques we have learned in this chapter we address the problem

of generating configurations of real polymer chains on a lattice, or in other words we want to generate
realizations of SAW on the computer.

DISKUSSION VON E(R2) SAW !!!!!!!!!!!!!

Simple sampling

The simplest algorithm to generate chains of length N is the following one. We start at the origin. The
first step is, of course, taken randomly from the q adjacent sites. The following steps are taken from the
remaining q0 q 1 possible directions, because a direct backfolding is forbidden. Of course, the SAW
condition is also violated whenever the chosen lattice site is already taken. In fact, the self–avoiding walk
has an infinite memory. In such cases the attempted walk is terminated and discarded and we have to start
with a new chain. In this way we automatically fulfill the condition that all walks of equal length have
the same probability. All sampled configurations are statistically independent and hence the standard error
analysis is possible. It is instructive to estimate that the success rate sN , i.e., the fraction of walks that will
continue successfully for N steps, is of the order

sN
ZN

q q 1 N 1
N& 1qN

eff
q q 1 N 1

qeff
q 1

N q 1
q

N& 1

which for large N decreases exponentially as

sN exp Nµ

with µ ln q 1 qeff . On a two–dimensional square lattice µ 0 128, on a 3d cubic lattice µ 0 065
Kremer und Binder [1988]. Because of this exponential decrease it is very difficult to generate very long
chains with the simple sampling algorithm. This problem is called the ”attrition problem”. In Fig. (5.5.2)
we have plotted the average number of trials necessary to generate polymers of a given length as a function
of the length of the polymers. The figure was generated with the help of the program RW 2D sa.m.

Listing of the program RW 2D sa.m

%%% S e l f a v o i d i n g Symmetric
%%% 2D Random Walk for one p a r t i c l e
%%%
%%% A t t r i t i o n problem count

5 %%%
hold of f ; c l e a r ;
c o l o r =[’ b ’ , ’ k ’ , ’ y ’ , ’ g ’ , ’ m’ , ’ c ’] ;

5.5. SAMPLING OF POLYMER CONFIGURATIONS 167

!40 !20 0 20 40

!40

!30

!20

!10

0

10

20

30

40

2d random walk: 10 realizations

x

y

Figure 5.10: Attrition problem: The average number of trials necessary to generate polmers of a given length increases
exponetially with the lentgth of the polymers .

10 r e a l i z a t i o n s = i n p u t (’ How many r e a l i z a t i o n s (1) ? ’) ;
N= i n p u t (’ How many walker s t e p s (2 0 0) ? ’) ;
l en = i n p u t (’ Length of the polymer (2 0 0) ? ’) ;
%%p= i n p u t (’ P r o b a b i l i t y for a s t e p to the r i g h t (0 . 5) ? ’) ;
s t e p s i z e = 1 ; d i sp (’ S t e p s i z e i s 1 ! ’) ; s tep max =1;

15
t = cput ime ;
% l e t i t walk . . .

% S t a r t p o s i t i o n s and a r r a y d e f i n i t i o n s
20 xpos (1 : r e a l i z a t i o n s , 1 : N+ 1) = 0 ; ypos (1 : r e a l i z a t i o n s , 1 : N+1)=0;

t r a p p e d (1 : N+1)=0;
a t t r i t i o n (1 : r e a l i z a t i o n s)=0 ;

% do t he r e a l i z a t i o n s
25 for j =1: r e a l i z a t i o n s ,

% do t he s t e p s
t r a p (1 : 4) = 1 ; f l a g =0;
while (sum (t r a p)==4 & f l a g = = 0)

a t t r i t i o n (j)= a t t r i t i o n (j)+1 ;
30 for i =2: N+1,

%% look for a d i r e c t i o n to walk to
%% (s e l f a v o i d i n g)
f l a g =1;
t r a p (1 : 4) = 0 ;

35 while (f l a g ==1)
random = f l o o r (rand (1) 3 . 9 9) + 1 ;
%% r i g h t
i f (random ==1)

168 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

xpos (j , i)= xpos (j , i 1)+ s t e p s i z e ;
40 ypos (j , i)= ypos (j , i 1);

t r a p (1) = 1 ;
%% l e f t

e l s e i f (random ==2)
xpos (j , i)= xpos (j , i 1) s t e p s i z e ;

45 ypos (j , i)= ypos (j , i 1);
t r a p (2) = 1 ;
%% up

e l s e i f (random ==3)
ypos (j , i)= ypos (j , i 1)+ s t e p s i z e ;

50 xpos (j , i)= xpos (j , i 1);
t r a p (3) = 1 ;
%% down

e l s e i f (random ==4)
ypos (j , i)= ypos (j , i 1) s t e p s i z e ;

55 xpos (j , i)= xpos (j , i 1);
t r a p (4) = 1 ;

end
% check s e l f a v o i d i n g up to l e n g t h "len"
f l a g =0;

60 for k= i 1: 1:max (1 , (i 1) l en) ,
i f (xpos (j , i)== xpos (j , k) & ypos (j , i)== ypos (j , k))

f l a g =1;
break ;

end
65 end

%% Check i f t r a p p e d
i f (f l a g ==1 & sum (t r a p)==4)

% disp (s p r i n t f (’ I am t r a p p e d and can t e scape a f t e r % i s t e p s ! ’ , i)) ;
t r a p p e d (i)= t r a p p e d (i)+1 ;

70 f l a g =0;
end

end

i f (sum (t r a p)==4)
75 break ;

end
% end s t e p loop

end

80 end
d i sp (s p r i n t f (’ I d id % i s t e p s in r e a l i z a t i o n # % i ! ’ , i 1, j)) ;
e n d p o i n t (j)= i ;

% end r e a l i z a t i o n s loop
85 end

% p l o t the e l a p s e d CPU time
t = cput ime t ;
d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t)) ;

90
% p l o t the pa ths of the walker
hold on ;
a x i s squa re ;
maximum=max (abs (max (max (xpos))) , abs (min (min (xpos)))) ;

95 maximum=max (maximum , max (abs (max (max (ypos))) , abs (min (min (ypos))))) ;
a x i s ([maximum maximum maximum maximum]) ;

5.5. SAMPLING OF POLYMER CONFIGURATIONS 169

% p l o t zero a x i s
p l o t ([maximum maximum] , [0 0] , ’ r ’) ;
p l o t ([0 0] , [maximum maximum] , ’ r ’) ;

100 % p l o t the t r a j e c t o r i e s
for j =1: r e a l i z a t i o n s

p l o t (xpos (j , :) , ypos (j , :) , c o l o r (1+ rem (j , 6))) ;
% mark the e n d p o i n t
p l o t (xpos (j , e n d p o i n t (j)) , ypos (j , e n d p o i n t (j)) , ’ r s ’) ;

105 end
t i t l e (’ S e l f Avoiding Random Walk in 2 Dimensions ’) ;

% p l o t the number of t r a p p e d walks
f i g u r e ;

110 p l o t (1 : N+1, t r a p p e d (1 : N+ 1) , ’ d ’) ;
x l a b e l (’ t r a p p e d a f t e r s t e p s ’) ;
y l a b e l (’ number of t r a p p e d walks ’) ;

115 % A t r i t i o n P l o t s
h i s t (a t t r i t i o n , 2 0) ;
t i t l e (’ A t t r i t i o n problem ’) ;
x l a b e l (’ number of t r i a l s per r e a l i z a t i o n ’) ;
d i sp (s p r i n t f (’ mean number of walks b e f o r e no t r a p p i n g occur s : % f + % f ’ , . . .

120 mean (a t t r i t i o n) , s td (a t t r i t i o n) / s q r t (r e a l i z a t i o n s))) ;

Importance sampling

To overcome the attrition problem it is necessary to exploit biased sampling techniques. One such technique
is the ”inversely restricted sampling” of Rosenbluth and Rosenbluth Rosenbluth und Rosenbluth [1955].
The idea is to associate each SAW of N steps with appropriately chosen weighting factors.

We consider a SAW of i steps on a lattice with the coordination number q. In order to sample the
next step we have to check which of the q0 q 1 neighboring sites is empty. Essentially, we have two
possibilities:

1. If k (q0 k 0) sites are empty we choose the possible steps with equal probability 1 k.
2. If there is no empty site (k 0) we terminate the walk and start from the beginning.
It is clear that each N step walk has the probability

PN ri

N

i 1
ki

1

and hence dense configurations are more probable. Thus this obvious procedure of choosing only among
those sites that do not violate the SAW condition does not give equal statistical weights to the generated
configurations. But since we have seen that these weight can be calculated we can compensate this bias by
weighting each chain in the sample by the factor

WN ri

N

i 1

ki
q0

Note, that we have WNPN q N
0 . The importance sampling procedure samples exactly the same configu-

ration space as simple sampling.
The correct way to estimate R2 is

R2
M
l 1 WN lR2

N l
M
l 1 WN l

170 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

i = 1 to number of walker steps

j = 1 to number of realizations

do a step of the walker j

walk trapped ?

all
realizations

done

all
steps done ?

Plot Results

YES

YES

YES

YES

step valid -
no crossing ?

NO

NO

NO

NO

Calculate weight of the walk

calculate weighted <R²>

Figure 5.11: The flow diagram of the program saw2.m.

where the sum is over all realizations.
In order to compare the two sampling techniques we have written a program RW 2D sa2.m (VORSCHLAG:

SAW2 !!!!!!) which by specifying an input parameter draws configurations of real chains on a two–
dimensional squared lattice with the simple sampling technique or with the biased (importance) sampling
technique. The flow diagram of the program can be seen in Fig. (5.5.2).

Listing of the program rw 2d sa2.m

%%% S e l f a v o i d i n g Symmetric
%%% 2D Random Walk for one p a r t i c l e
%%%
%%% c a l c u l a t i n g end to end d i s t a n c e

5 %%%

5.5. SAMPLING OF POLYMER CONFIGURATIONS 171

hold of f ; c l f ; c l e a r ; s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 4) ;

% maximum number of d i s p l a y e d t e x t du r ing a s i m u l a t i o n
10 d i s p s t e p =5;

% maximum number of p l o t s for one N
p l o t s t e p =5;
% c o l o r s for t he random walks p l o t s
c o l o r =[’ b ’ , ’ k ’ , ’ y ’ , ’ g ’ , ’ m’ , ’ c ’] ;

15
% weighted RW ? ?
weight = i n p u t (’ Weighted random walk (1= ja) ? ’) ;

% i n p u t p a r a m e t e r s
20 r e a l i z a t i o n s = i n p u t (’ How many r e a l i z a t i o n s (1 0) ? ’) ;

N min= i n p u t (’ polymer l e n g t h to s t a r t wi th (5) ? ’) ;
N max= i n p u t (’ polymer l e n g t h to s top wi th (5 5) ? ’) ;
N step = i n p u t (’ Step s i z e for N (1 0) ? ’) ;

25 s t e p s i z e = 1 ; d i sp (’ S t e p s i z e i s 1 ! ’) ; s tep max =1;
R squa re (N min : N step : N max)=0 ;

% Loop over l e n g t h of polymer
30 for l en =N min : N step : N max ,

N= len ;

t (l en)= cput ime ;
% l e t i t walk . . .

35
% S t a r t p o s i t i o n s and a r r a y d e f i n i t i o n
xpos (1 : r e a l i z a t i o n s , 1 : N)=0 ;
ypos (1 : r e a l i z a t i o n s , 1 : N)=0 ;

40 % do t he r e a l i z a t i o n s
for j =1: r e a l i z a t i o n s ,

% s e t s t a r t i n g weight to 1
W 2d(j)=1 ;

45
t r a p (1 : 4) = 1 ;
% do t he r e a l i z a t i o n u n t i l no dead lock occur s
while (sum (t r a p) = = 4) ,

% do t he s t e p s
50 for i =2: N,

%% look for a d i r e c t i o n to walk to
%% (s e l f a v o i d i n g)
f l a g =1;

55 t r a p (1 : 4) = 0 ;
while (f l a g ==1)

random = f l o o r (rand (1) 3 . 9 9) + 1 ;
%% r i g h t
i f (random ==1)

60 xpos (j , i)= xpos (j , i 1)+ s t e p s i z e ;
ypos (j , i)= ypos (j , i 1);
t r a p (1) = 1 ;
%% l e f t

e l s e i f (random ==2)

172 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

65 xpos (j , i)= xpos (j , i 1) s t e p s i z e ;
ypos (j , i)= ypos (j , i 1);
t r a p (2) = 1 ;
%% up

e l s e i f (random ==3)
70 ypos (j , i)= ypos (j , i 1)+ s t e p s i z e ;

xpos (j , i)= xpos (j , i 1);
t r a p (3) = 1 ;
%% down

e l s e i f (random ==4)
75 ypos (j , i)= ypos (j , i 1) s t e p s i z e ;

xpos (j , i)= xpos (j , i 1);
t r a p (4) = 1 ;

end
% check s e l f a v o i d i n g up to l e n g t h "len"

80 f l a g =0;
for k= i 1: 1:max (1 , (i 1) l en) ,

i f (xpos (j , i)== xpos (j , k) & ypos (j , i)== ypos (j , k))
f l a g =1;
break ;

85 end
end
%% Check i f t r a p p e d
i f (f l a g ==1 & sum (t r a p)==4)

%%% disp (’ I am t r a p p e d and can t e scape ! ’) ;
90 break ;

end
end
%% Check i f t r a p p e d
i f (f l a g ==1 & sum (t r a p)==4) break ; end

95
% Change weight a p p r o p i a t e l y
i f (weight ==1 & i 2)

anz =0;
xy (1 , 1) = xpos (j , i 1) 1; xy (1 , 2) = ypos (j , i 1) 0;

100 xy (2 , 1) = xpos (j , i 1) 0; xy (2 , 2) = ypos (j , i 1) 1;
xy (3 , 1) = xpos (j , i 1)+1; xy (3 , 2) = ypos (j , i 1)+0;
xy (4 , 1) = xpos (j , i 1)+0; xy (4 , 2) = ypos (j , i 1)+1;
for k= i 1: 1:1,

for d i r e c t = 1 : 4 ,
105 i f (xpos (j , k)== xy (d i r e c t , 1) & ypos (j , k)== xy (d i r e c t , 2))

anz =anz +1;
break ;

end
end

110 end
%% not p o s s i b l e to have anz =0 !
%i f (anz ==0)
% disp (’ ! ! ! ! Anzahl 0 ! ! ! ’) ;
%e l s e

115 W 2d(j)= W 2d (j) (anz / 3) ;
%end

end

% end s t e p loop
120 end

% d i s p l a y only "disp_step" t imes in a s i m u l a t i o n

5.5. SAMPLING OF POLYMER CONFIGURATIONS 173

i f (rem (j , f l o o r (r e a l i z a t i o n s / d i s p s t e p)) = = 0)
d i sp (s p r i n t f (’ I d id % i s t e p s in r e a l i z a t i o n # % i ! ’ , i , j)) ;

125 end
e n d p o i n t (j)= i ;

% end while loop
end

130
% end r e a l i z a t i o n s loop
end

% p l o t the e l a p s e d CPU time
135 t (l en)= cput ime t (l en) ;

d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t (l en))) ;

% p l o t the pa ths of the walker
hold on ;

140 a x i s squa re ;
maximum=max (abs (max (max (xpos))) , abs (min (min (xpos)))) ;
maximum=max (maximum , max (abs (max (max (ypos))) , abs (min (min (ypos))))) ;
a x i s ([maximum maximum maximum maximum]) ;
% p l o t zero a x i s

145 p l o t ([maximum maximum] , [0 0] , ’ r ’) ;
p l o t ([0 0] , [maximum maximum] , ’ r ’) ;
% p l o t the t r a j e c t o r i e s (but maximum p l o t s t e p)
for j =1: r e a l i z a t i o n s

i f (rem (j , f l o o r (r e a l i z a t i o n s / p l o t s t e p))==0)
150 p l o t (xpos (j , :) , ypos (j , :) , c o l o r (1+ rem (j , 6))) ;

% mark the e n d p o i n t
p l o t (xpos (j , e n d p o i n t (j)) , ypos (j , e n d p o i n t (j)) , ’ r s ’) ;

end
end

155 t i t l e (’ S e l f Avoiding Random Walk in 2 Dimensions ’) ;
hold o f f ; drawnow ;

% C a l c u l a t e the end to end d i s t a n c e
R squa re (l en)= sum ((W 2d (:) . (xpos (: , N) . ˆ 2 + ypos (: , N) . ˆ 2)) / sum (W 2d)) ;

160 %R s q u a r e e r r o r (l en)= s td ((W 2d (:) . (xpos (: , N) . ˆ 2 + ypos (: , N) . ˆ 2)) / sum (W 2d)) ;
R s q u a r e e r r o r (l en)=1 ;

d i sp (s p r i n t f (’ n R = % f + % f for N = % i ! n ’ , R squa re (l en) , R s q u a r e e r r o r (l en) , N)) ;

165 % end loop over l e n g t h of polymer
end

% p l o t the s c a l i n g b e h a v i o u r !
% blue l i n e

170 f i g u r e ;
l o g l o g (N min : N step : N max , R squa re (N min : N step : N max)) ;
hold on ;
% compare wi th t h e o r e t i c a l s c a l i n g b e h a v i o u r
% d o t t e d red l i n e

175 f a c t o r = 0 . 8 ;
l o g l o g (N min : N step : N max , f a c t o r (N min : N step : N max) . ˆ (4 / 3) , ’ r : ’) ;
t i t l e (’ end to end d i s t a n c e v e r s u s N in 2 d imens ions ’) ;
x l a b e l (’ l e n g t h N’) ;
y l a b e l (’ R ’) ;

180

174 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

!30 !20 !10 0 10 20 30
!25

!20

!15

!10

!5

0

5

10

15

20

25
 Self Avoiding Random Walk in 2 Dimensions

Figure 5.12: Five realizations of a two–dimensional self–avoiding random walk on a square lattice generated by the
simple sampling technique.

% do a po lynomia l f i t in the l o g l o g p l o t to ge t s c a l i n g
% f i t a l i n e us ing l e a s t squa re method
% black l i n e
c o e f f = p o l y f i t (log (N min : N step : N max) , log (R squa re (N min : N step : N max)) , 1) ;

185 d i sp (s p r i n t f (’ e s t i m a t e d s c a l i n g exponent s = % f (t h e o r y : 1 . 3 3 3 3 3) ! ’ , c o e f f (1))) ;
d i sp (s p r i n t f (’ p r e f a c t o r a of a Nˆ s i s : % f ’ , exp (c o e f f (2)))) ;
l o g l o g (N min : N step : N max , exp (c o e f f (2)) (N min : N step : N max) . ˆ c o e f f (1) , ’ k ’) ;
a x i s t i g h t ;

190 % e l a p s e d CPU time p l o t in new f i g u r e
f i g u r e ;
p l o t (N min : N step : N max , t (N min : N step : N max)) ;
t i t l e (’ CPU time for t he 2 D s e l f a v o i d i n g random walk ’) ;
x l a b e l (’ l e n g t h N’) ;

195 y l a b e l (’ CPU time in seconds ’) ;

Let us comment on the program. BLA BLA BLA !!!!!!!!! We run the program for the following set of
parameters. We variate the length of the SAW from N=5 to N=55 in steps of 10. For each SAW length we
generate 10 realizations first with the simple sampling technique and second with the importance sampling
technique.

First we run the program for the simple sampling algorithm. In Fig. (5.5.2) we see 5 realizations of the
self–avoiding random walk for N=55 generated by the importance sampling technique. In Fig. (5.5.2) we
show the mean square end–to–end distance as a function of N in a double logarithmic plot. The continuous
line indicates the theoretically expected behaviour whereas the dotted line is the result of the least square
fit to a straight line from which we derived the scaling exponent. In Fig. (5.5.2) we plot the CPU time
necessary to generate 10 realizations of a polymer of a specific length as a function of N. One easily
recognizes that the CPU time increases exponentially. The critical exponent determined by the least square
fit R2 aNs where a=0.81 and s=1.36. Thus the estimate of the critical exponent is) 0 68 (the expected
result is 0.75).

Let us now discuss the importance sampling approach. In Fig. (5.5.2) we see 5 realizations of the self–
avoiding random walk for N=55 generated by the importance sampling technique. In Fig. (5.5.2) we show
the mean square end–to–end distance as a function of N in a double logarithmic plot. The continuous line
indicates the theoretically expected behaviour whereas the dotted line is the result of the least square fit to

5.5. SAMPLING OF POLYMER CONFIGURATIONS 175

101

101

102

 end to end distance versus N in 2 dimensions

length N

<
R²

 >

Figure 5.13: The mean square end–to–end distance of a self–avoiding random walk generated by the simple sampling
technique as a function of the polymer length.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
 CPU time for the 2D self avoiding random walk

length N

CP
U

tim
e

in
 s

ec
on

ds

Figure 5.14: The CPU time for generating 10 realizations of a self–avoiding random walk by the simple sampling
technique as a function of the polymer length.

176 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

!20 !15 !10 !5 0 5 10 15 20
!20

!15

!10

!5

0

5

10

15

20
 Self Avoiding Random Walk in 2 Dimensions

Figure 5.15: Five realizations of a two–dimensional self–avoiding random walk on a square lattice generated by the
importance sampling technique.

Table 5.3 Values of R2 as functions of N, for two–dimensional random walks generated by the simple
sampling (ss) and by the importance sampling (is) technique.

N R2 ss R2 is
5 7.0 4.3

15 41.6 14.02
25 51.2 44.20
35 86.6 100.13
55 193.8 72.51
65 179.2 103.79

a straight line from which we derived the scaling exponent. In Fig. (5.5.2) we plot the CPU time necessary
to generate 10 realizations of a polymer of a specific length as a function of N. One easily recognizes that
the CPU time increases exponentially. The critical exponent determined by the least square fit R 2 aNs

where a=0.424 and s=1.404. Thus the estimate of the critical exponent is) 0 702 (the expected result is
0.75).

In table (5.5.2) we sum up the results of the simulations.
In the next table (5.5.2) we show the result of another run of the program rw2dsa2 which was run for

500 realizations.
The same data are depicted in Fig. (5.5.2). The scaling behaviour estimated from the above data is

found to be R2 aNs, where a=0.38614 and s= 1.41248. Thus the critical exponent is found to) 0 706.
Fig. (5.5.2) shows the corresponding CPU time consumption.
IRGENDEIN VERGLEICH ZWISCHEN SIMPLE UND IMPORTANCE SAMPLING !!!!!
FIGUREN: FEHLER!!!!

5.6 Exercises
EXERCISE 5.1 Random-Number Generator [Press et al., 1992b, Chapter 7]
Now that we have already used random numbers for many simulations, we would like to know, how to

5.6. EXERCISES 177

101

101

102

 end to end distance versus N in 2 dimensions

length N

<
R²

 >

Figure 5.16: The mean square end–to–end distance of a self–avoiding random walk generated by the importance
sampling technique as a function of the polymer length.

0 10 20 30 40 50 60
0

5

10

15

20

25
 CPU time for the 2D self avoiding random walk

length N

CP
U

tim
e

in
 s

ec
on

ds

Figure 5.17: The CPU time for generating 10 realizations of a self–avoiding random walk by the importance sampling
technique as a function of the polymer length.

178 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

Table 5.4 Mean square end–to–end distance estimated by importance sampling from a sample of 500
realizations.

N R2

10 13.709
30 45.651
50 53.559
70 153.023
90 234.747
110 220.095
130 350.079
150 566.384
170 711.81
190 744.514

101 102101

102

importance sampling

length N

<
R²

 >

Figure 5.18: The mean square end–to–end distance of a self–avoiding random walk estimated from a sample of 500
realizations by the importance sampling technique as a function of the polymer length.

5.6. EXERCISES 179

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9 x 104 importance sampling

length N

CP
U

tim
e

in
 s

ec
on

ds

Figure 5.19: The CPU time for generating 500 realizations of a self–avoiding random walk by the importance sampling
technique as a function of the polymer length.

generate random numbers on a computer. Therefore write a program, which produces random numbers
using the linear congruential method. That means, succesive random numbers are generated by

In 1 aIn c mod M

where I1 is the initial seed.
Use the following parameters:

1. a 16807;c 0;M 231 1 (the Matlab parameters for rand, the ran0 routine from Numerical
Recipes book)

2. a 65539;c 0;M 231 1

Compare the sequences of the two generators by looking at the produced distribution, calculating the
moments (use Assignment 2), looking at vectors of random numbers with length 2 and 3 using the plotting
facilities of Matlab.

Maybe you have another idea to check the random number generators?? (Dont forget to tell us)

EXERCISE 5.2 Poisson Distribution [Rubinstein, 1981b, Chapter 3.7.2]
Write a program to produce Poisson distributed random numbers.

P$ n
$ne $

n!
n $ 0 Poisson Distribution

The first way would be to use the rejection method as described in [Press et al., 1992b, Chapter 7.3].
We want to use a different method, based on the generation of the exponential distribution (and therefore
the transformation method).

If the time intervals between some events are from an exponential distribution, then the number of
events occurring in an unit interval of time is from the Poisson distribution P$ n . Which means (use
Ti 1 $ lnUi, Ui in (0,1))

x

i 0
Ti 1

x 1

i 0
Ti

x

i 0
Ui e $

x 1

i 0
Ui

180 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

where Ti (i 0 1 x 1) are drawn from exp 1 $Ti . Then the corresponding algorithm reads like: (A
is a real variable, k is an integer variable)

1. Set A 1 and k 0

2. Generate a random number Uk from U(0,1) (uniform distribution, but not U[0,1] !)

3. Set A to A Uk

4. if A e $ then use k as random number and finish!

5. set k to k 1 (increment k) and return to step 2

Again check the generated sequences of random numbers like in the previous exercises.

EXERCISE 5.3 Acceptance-Rejection-Method [Rubinstein, 1981b, Chapter 3.4.2]
Calculate the volume of a n-dimensional hypersphere, or in other words: generate a random vector uni-
formly distributed inside an n-dimensional unit sphere using the Acceptance-Rejection-Method.

The idea is to produce a vector inside the n-dimensional hypercube and accept all random vectors lying
inside the hypersphere. Remember that you have to produce numbers in 1 1 , so you have to transform
the numbers generated by rand() to be in the desired interval.

What is the exact result? Compare it with the estimated values and plot the error versus the dimension
n.

What has to be changed, if you want to calculate the surface of the unit-sphere?
Is the algorithm efficient for large n and why/why not?

EXERCISE 5.4 Importance Sampling [Rubinstein, 1981b, page 122]
First calculate the integral (Maxwell-Boltzmann-distribution for the modulus of the velocity)

.

0

ve v2
dv

1
2

e v2
.

0

1
2

using the standard Monte-Carlo-Integration with simple sampling. Use a reasonable cut-off value c to get
rid of the infinite integration interval. What is the systematic error involved using a cut-off of c? e.g. use
a c to reduce the systematic error to be lower than 10 10! (1

2 e c2
(10 10 c 4 73 so c 10

would be a very good choice.)
Now write a program for calculating the same integral, but using the importance sampling method.

Therefore we choose the importance function (distribution) to be

p v e v2

So the integral to be calculated for this p v is

Ic

c

0

ve v2

e v2 e v2
c

0

v p v dv

You have to generate random numbers distributed with p v (normally distributed random numbers can
be generated in Matlab using the randn() function.) and evaluate the integral c

0 vdp v If you use
randn(), you have to correct for the normalization factor of the normal distribution.

The formula for the standard MCI:

Ic
1
N

N

i 0
c5

where 5 is a normally distributed random number.
Compare both methods using a plot of accuracy versus CPU-time.

5.6. EXERCISES 181

EXERCISE 5.5 Symmetric 2D Random Walk - First Passage Times
Write a program for a 2D random walk (not self avoiding) on a square lattice with constant step size.

Use a sample of walkers to calculate an estimate of the time (number of steps) it needs, to cross a given
circle around the origin with Radius R. This is called the first passage time.

pp
p

p

a

a

R

A square lattice in 2D with a symmetric random walker (probability for each direction is p) starting at the
origin and crossing the circle with radius R after three equidistant steps with size a.

EXERCISE 5.6 Scaling Behavior of Random Walk in 2D and 3D
Write a program for a 2D random walk on a square lattice (symmetric and asymmetric). Use this program
to calculate the scaling behavior of the end-to-end distance R 2 for different lengths N of the walk.

After viewing some nice walks, plot the end-to-end distance versus the length N of the random walk. If
you have enough data, do a least square fit using the polyfit function of Matlab using a fit function:

R2 aNb

to get a and b
Then extend the program to a 3D random walk on a cubic lattice and again analyze the scaling behavior

of the end-to-end distance.
Now compare your results b with the experiments done in the lecture about the self-avoiding random

walk!
Remark: A least square fit is a method, where you fit a analytically known function with (observed) data.

The function is given using certain parameters (here the function is y R 2 aNb) and the parameters have
to be calculated. This is done by minimizing the euclidean distance (“mean square”) between the function
and the data.

EXERCISE 5.7 Percolation in 2D and Cluster Algorithms [MacKeown, 1997, Chapter 4.2]
Assume we have a 2D plane divided into cells of equal size. We start by sweeping the whole plane from
the upper left corner to the lower right corner. With probability p we set each cell to one (with probability
1 p to zero). Then we are left with an array of ones and zeros.

Now we analyze this pattern by looking for clusters of ones in the whole plane. A cluster is an area
of ones where the ones are connected to each other in the nearest neighbor sense (no diagonal bonds
possible). If we have a cluster connecting the left side with the right side or the upper and the lower side,
we call it a spanning cluster. Otherwise it is just a finite cluster of a certain size.

Now, one is interested in the critical probability pc, where such spanning clusters occur or do not occur.
Of course using a simulation with finite size, we get a broad interval (instead of a sharp one) in which the
transition of the two behaviors takes place. We will neglect such finite size effects and concentrate on the
transition probability.

Now you can watch the configurations and decide if there is a spanning cluster or not. That is very tedious.
Therefore we give a very easy algorithm for clustering the given configuration (The Hoshen-Kopelman algorithm): We

182 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

need two arrays, one stores the indices (say N m , a 1D array) and the other one stores the labels assigned to each
site (say L i j , a N N-array, where N is the number of cells in one direction).

You scan all the occupied sites starting with the upper left corner assigning a label to each site using the following
rules (unoccupied sites are labeled with zero):

if neither of the site above and to the left of the cell are occupied, you assign a new integer value m to the site
and set N m m.

if the left and/or the upper site are occupied and have the same label assigned to them, you give the site the
same label.

if the labels of the left and upper site are different, you assign the smaller (say k) of the two labels to the new
site. And you set the index of the larger one also equal to this value (N larger k).

After you have swept over all sites, you have to remove redundant labels from the array N. An index is redundant, if
the index h is not equivalent to the label stored in N h . and change the corresponding labels in the 2D array L i j .
Now you are done: Just look for the labels on opposite faces, if there are same labels on them, you have a spanning
cluster.

Write a program for a percolation in 2D and try to estimate the critical probability. Increase the size
of the grid and compare. To that end plot the probability distribution of having a spanning cluster versus
the probability p used for creating the configuration. For 2D p c can be calculated analytically: pc 0 5

EXERCISE 5.8 The Einstein Solid and the Boltzmann Distribution [Rhula, 1992, Chapter 5]
The probability for an oscillator in a solid to be in a state with energy (is given by the Boltzmann distri-
bution (canonical distribution)

P (i
1
Z

exp
(i
kT

where Z is the partition function (Z i exp (i kT). This distribution plays a very important role in
physics and especially in statistical mechanics. To get a first impression of the distribution and to have a
very simple model producing a Boltzmann distribution, we study a very simple model for a solid, named
after Einstein.

We study a 2D plane and divide the plane into cells of equal sizes, like quantum mechanics through
the Heisenberg uncertainty principle prescribes. Each cell represents an atom and each atom can vibrate
around its equilibrium position in the middle of the cell. The strength of the vibration is quantized and
given in multiples of a fundamental mode with energy 0. Because we have an isolated system, no energy
gets dissipated or absorbed. The only way of changing the configuration is by hopping of a quanta from
one cell to another (which is just a transfer of an energy quantum 0

The algorithm (sometimes called temperature game) reads as follows:

Initialize all cells with 1 quanta

Choose a source cell and a destination cell at random (drawn from a uniform distribution)

If there is NO quanta in the source cell, draw new random numbers.

If there is a quanta in the source cell to jump and the destination cell is not equivalent to the source
cell, do a jump of one quanta from source cell to destination cell.

Having done enough jumps, we reach the equilibrium situation. Now we can count the number of
cells) having zero, one, two, etc. quanta in it (call these m) m ()). By plotting the correspond-
ing histogram, we get the Boltzmann distribution.

The energy of a cell at the end is just the number of quantas) times the energy per quanta plus 1 2 0
(assuming harmonic oscillations). From now on, we neglect the zero temperatur energy of the harmonic
oscillator to make life easier (it is just a shift of energy anyway.).

The Boltzmann distribution for the histogram is

m () m 0 exp
) 0
kT

5.6. EXERCISES 183

So to find the “temperature” of the solid, we have to use a fit of the Boltzmann distribution to the data and
extract the value)1 2, where the distribution has come down to half of the initial value m 0 . Then we can
use

0
kT

ln2
)1 2

and can calculate the temperature for the given system. The temperature depends only on the size of the
simulation and therefore the total number of quantas present.

Write a program to implement the above algorithm in Matlab. Watch the configuration evolving in time
(especially at the first steps). Compare the calculated distribution with a Boltzmann distribution using a
least square fit in a semilogarithmic (y-axes) plot (use polyfit). Why dont we get a uniform distribution
as an equilibrium distribution?

184 CHAPTER 5. SAMPLING OF PROBABILITY DISTRIBUTIONS

Bibliography

Doi, M. und Edwards, S. F. The Theory of Polymer Dynamics, Band 73 von International Series of Mono-
graphs on Physics. Clarendon Press, Oxford, 1986.

de Gennes, Pierre-Gilles. Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca and
London, 1979.

Knuth, Donald E. The Art of Computer Programming, Band 2/Seminumerical Algorithms. Addison–
Wesley, Reading, zweite Auflage, 1981.

Kremer, Kurt und Binder, Kurt. Monte Carlo Simulations of Lattice Models for Macromolecules. Computer
Physics Reports, 7:259–310, 1988.

MacKeown, P. Kevin. Stochastic Simulation in Physics. Springer Verlag, 1997.

Press, W. H., Teukolsky, S. A., Vetterlin, W. T. und Flannery, B. P. Numerical Recipes in Fortran, The Art
of Scientific Computing. Cambridge University Press, Cambridge, zweite Auflage, 1992a.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. und Flannery, B.P. Numerical Recipes in Fortran - The Art
of Scientific Computing. Cambridge University Press, zweite Auflage, 1992b.

Raposo, E. P., de Oliveira, S. M., Nemirovsky, A. M. und Coutinho-Filho, M. D. Random Walks: A
pedestrian approach to polymers, critical phenomena, and field theory. Am. J. Phys., 59(7):633–645,
1991.

Rhula, Charles. The Physics of Chance, from Blaise Pascal to Niels Bohr. Oxford University Press, 1992.
translated from french by G. Barton.

Rosenbluth, Marshall N. und Rosenbluth, Arianna W. Monte Carlo Calculation of the Average Extension
of Molecular Chains. The Journal of Chemical Physics, 23(2):356–359, 1955.

Rubinstein, Reuven Y. Simulation and the Monte Carlo Method. Wiley Series in Probability and Mathe-
matical Statistics. John Wiley & Sons, New York, 1981a.

Rubinstein, R.Y. Simulation and the Monte Carlo Method. Wiley, New York, 1981b.

185

186 BIBLIOGRAPHY

Part III

Stochastic Processes

187

Chapter 6

Markov Processes and Master
Equations

This chapter is devoted to the introduction of some mathematical concepts, which allow the correct treat-
ment of time–dependent probabilistic phenomena. Such processes occur in many branches of physics. A
typical example, is for instance, the dynamics of the velocity field in a turbulent fluid. We will introduce
stochastic processes as time dependent stochastic variables and we will learn how the dynamics of a partic-
ular class of stochastic processes, the so–called Markov processes is described with the help of differential
Chapman–Kolmogorov equations. These concepts will be applied in the next chapters to typical examples
from statistical physics.

6.1 Stochastic Processes
We have already learned in Chap. 2 that once a stochastic variable X has been defined it is possible to
define other stochastic variables, say Y , as functions of X by some mapping f . In particular, the quantity Y
may be a function of an additional time variable t, i.e.,

Y t f X t

Sloppy speaking, such a quantity Y t is called a stochastic processes. If we insert for X one of its possible
values x we obtain an ordinary function

y t f x t

which is a realization of the stochastic process van Kampen [1992]. It is customary in statistical physics to
regard the stochastic process as an ensemble of such realizations.

It follows immediately from the random variable transformation theorem that the probability density
for Y t to take the value y at time t is given by

P1 y t dx- y f x t P x

and, accordingly, the joint probability density that Y has the value y 1 at time t1, the value y2 at time t2, ,
and the value yn at time tn is given by

Pn y1 t1;y2 t2; yn tn

dx- y1 f x t1 - y2 f x t2 - yn f x tn P x

189

190 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

In such a way an infinite hierarchy of joint probability densities Pn n 1 2 is defined, which allows
the evaluation of expectation values like

Y t1 Y t2 Y tn

dy1 dy2 dyny1y2 ynPn y1 t1;y2 t2; yn tn

It has been shown by Kolmogorov (van Kampen [1992]) that the hierarchy of joint probability densities
introduced above completely specifies a stochastic process if the following four consistency conditions are
satisfied
(i) Pn 0;
(ii) Pn is a symmetric function of the pairs y1 t1 , , yn tn ;
(iii) dynPn y1 t1; yn tn Pn 1 y1 t1; ;yn 1 tn 1 ;
(iv) dy1P y1 t1 1.

Thus, the hierarchy of joint probability densities constitutes an alternative way to define stochastic
processes. With increasing n the description of the stochastic process gets more precise. It is important to
make the following remarks. The condition (iii) implies that each density Pn includes the knowledge of all
previous densities Pk with k n. Furthermore, the density Pn does have the following property if two time
arguments are identical

Pn x t;y1 t;y2 t2; ;yn 1 tn 1 Pn 1 x t;y2 t2; ;yn 1 tn 1 - x y1

The hierarchy of probability densities is also the starting point for the classification of stochastic processes.
A stochastic process is said to be purely random if events at different times are not correlated. In this case
the joint probability density factorizes, i.e. we have

P2 y1 t1;y2 t2 P1 y1 t1 P1 y2 t2
P3 y1 t1;y2 t2;y3 t3 P1 y1 t1 P1 y2 t2 P1 y3 t3

and so on.

This means that the value of Y at time t is completely independent of its values in the past and in the future.
An even more special case occurs when the P1 yi ti are independent of ti. In this case the same probability
law governs the process for all times. Such processes are called Bernoulli trials (Gardiner [1990]). In the
next section we will introduce the next most simple class, the Markov processes, in which the knowledge
of only the presents determines the future.

6.2 Markov Processes
In order to define the class of stochastic processes, which will be of central importance in the forthcoming
theoretical discussions and in the examples of the next chapters, we will formulate the Markov assump-
tion. This assumption is formulated in terms of conditional probability densities which we will denote by
Tn x t y1 t1;y2 t2; yn tn . This quantity gives the probability that the stochastic process takes the value
x at time t given that it had the value y1 at time t1, y2 at time t2, , yn at time tn, where we assume that
t1 tn t. The conditional probability density has the following properties
(i) Tn 0,
(ii) dxTn 1,
(iii) Tn x t y1 t;y2 t2; yn tn - x y1 .
As we already know the joint probability density Pn can be expressed with the help of Bayes’ theorem
through the conditional probability density Tn 1 as

Pn x t;y1 t1;y2 t2; yn 1 tn 1

Pn 1 y1 t1;y2 t2; yn 1 tn 1 Tn 1 x t y1 t1;y2 t2; yn 1 tn 1

Now we are in the position to define the class of Markov processes. Let t 1 tn tn 1 be an or-
dered sequence of times. A Markov process is defined through the following condition for the conditional

6.3. THE DIFFERENTIAL CHAPMAN–KOLMOGOROV EQUATION 191

probability density of the stochastic process

Tn yn 1 tn 1 y1 t;y2 t2; yn tn T1 yn 1 tn 1 yn tn

In other words, the conditional probability density at t n 1 given the value of yn at time tn is uniquely
determined and is not affected by any value of y at earlier times. Thus, the conditional probability density
is determined completely by the knowledge of the most recent condition. The above definition implies
that for a Markov process all Tn with n 1 can be determined from the conditional probability density
T1, which will also be called the one step transition probability density. As an immediate consequence a
Markov processes is completely characterized by the knowledge of the one step transition probability and
by the probability density P1. With the help of these two functions we can reconstruct the whole hierarchy
of probability densities. For example, we have

P3 y1 t1;y2 t2;y3 t3 P2 y1 t1;y2 t2 T2 y3 t3 y1 t1;y2 t2
T1 y3 t3 y2 t2 T1 y2 t2 y1 t1 P1 y1 t1 (6.1)

Integrating the above equation (6.1) over y 2 we obtain

P2 y1 t1;y3 t3 P1 y1 t1 dy2T1 y3 t3 y2 t2 T1 y2 t2 y1 t1 (6.2)

Dividing both sides by P1 y1 t1 we obtain an identity which must be obeyed by the transition probability
of any Markov process

T1 y3 t3 y1 t1 dy2T1 y3 t3 y2 t2 T1 y2 t2 y1 t1 (6.3)

The above identity is called the Chapman–Komogorov equation. It has a simple interpretation. The tran-
sition probability between two states y1 and y3 with t1 t3 corresponds to the product of the transition
probability between the initial state and some intermediate state and the transition between this intermedi-
ate state and the final state integrated over all intermediate states.

As we already noted the functions P1 and T1 uniquely define a Markov process. However, these two
functions are not arbitrary. They must satisfy the Chapman–Kolmogorov equation and the obvious consis-
tency condition

P1 y2 t2 dy1T1 y2 t2 y1 t1 P1 y1 t1 (6.4)

For the sake of a compact notation we will write now P P1 and T T1.

6.3 The Differential Chapman–Kolmogorov Equation
We now derive a differential form of the Chapman–Kolmogorov equation which is more practical for
physical applications. We will proceed in two steps. First, we introduce the concept of generator of a
stochastic process. Second, we will construct with the help of the generator an equation of motion for the
transition probabilty density.

6.3.1 The Generator of a Markov Process
We consider the time evolution of the expectation value of a function f y . Thus,

3
3t

f y
3
3t

dy f y P y t

lim
%t 0

1
%t

dy f y P y t %t P y t

192 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

Making use of the consistency condition (6.4) in the first term on the right–hand side of the above equation
we obtain

3
3t

f y lim
%t 0

1
%t

dy dy f y T y t %t y t P y t dy f y P y t

We rename the integration variables in the positive term of the right–hand side of the above equation
(y y , y y) to obtain

3
3t

f y lim
%t 0

1
%t

dy dy f y T y t %t y t - y y f y P y t

which we can also write as

3
3t

f y dyP y t lim
%t 0

1
%t

dy f y T y t %t y t - y y f y

At this point it is convenient to introduce the infinitesimal generator of a Markov process A as

A t f x lim
%t 0

1
%t

dy f y T y t %t x t f x (6.5)

f y is some measurable function for which the above limit exists. Evidently A is a linear operator, which
can be determined from the transition probability density. When the operator A operates on f it describes
the change of the expectation value of f in an infinitesimal time step. As a consequence of the Chapman–
Kolmogorov equation each time step t t1 can be decomposed into a sequence of smaller time steps. So
it is plausible to characterize the Markov process by regarding infinitesimal time steps. The importance of
the generator A lies in the fact that together with some initial condition P x t 0 it specifies uniquely the
Markov process. The time evolution equation for the expectation value can be written in the compact and
suggestive form

3
3t

f A f (6.6)

6.3.2 The Differential Chapman–Kolmogorov Equation
With the help of the generator we derive an equation of motion for the transition probability T . Multiplying
equation (6.5) with T x t x t (t t) and integrating over x we obtain

dx A t f x T x t x t

lim
%t 0

1
%t

dy f y T y t %t x t dx f x T x t x t

where we made use of the Chapman–Kolmogorov equation. We now rename the variable y on the right–
hand side of the above equation and call it x and perform the limit %t 0

dx A t f x T x t x t dx f x
3
3t

T x t x t (6.7)

It is convenient to introduce the adjoint operatorA † to the generatorA according to the following definition

dx A t f x T x t x t dx f x A† t T x t x t (6.8)

We will see in the next sections how the adjoint operator is explicitely constructed. Inserting Eq. (6.8) into
Eq. (6.7) and considering that (6.8) holds for any function f x we conclude that the equation of motion
for the transition probability is given by

3
3t

T x t x t A† t T x t x t (6.9)

6.4. THE LIOUVILLE EQUATION 193

We will call the above equation the differential Chapman–Kolmogorov equation. The differential Chapman–
Kolmogorov equation is the central equation of this chapter. Together with some initial probability distri-
bution it defines completely a Markov process. With its help it is possible to compute time–dependent
expectation values and multi–time correlation functions. Because of its importance, it is sometimes named
the master equation in the physical literature.

Let us end this subsection with an overview of this chapter. In Fig. (6.3.2) we have schematically
summerized the theory of stochastic processes. Particular emphasis is given to Markov processes which
will be at the center of the present and of the next chapters. In the next section we will construct the
differential Chapman–Komogorov equation for deterministic Markov processes, for jump processes and
for diffusion processes.

6.4 The Liouville Equation
Let us consider a physical system whose dynamics is described by a system of ordinary differential equa-
tions of first order

d
dt

x t g x t (6.10)

where g is a function Rd Rd . It is clear that Hamiltonian systems belong to this class (Arnold [1978]).
The initial condition is

x 0 x Rd

We denote the unique solution of this equation by # t x , where the x stresses the dependence on the initial
condition.

If f : Rd Rd is a continuous differentiable function then it follows from Eq. (6.10)

d
dt

f x t
i

3 f
3xi

x t gi x t (6.11)

where gi denotes the i–th component of g.
With the help of these formal preliminaries it is easy to construct the generator of a deterministic

Markov process. Obviously we have for the expectation value

E f x t f # x t

where the symbol E denotes the expectation value.
Inserting the above expectation value into the definition of a generator (6.5) we immediately obtain

AL t f lim
t 0

1
t

E f x t f x

lim
t 0

1
t

f # x t f # 0 x

d
dt

f x

and finally, using Eq. (6.11),

AL t f
i

3 f
3xi

x gi x

Having determined the generator it is now straightforward to evaluate the corresponding differential
Chapman–Kolmogorov equation. To this end we only have to determine the operator which is adjoint to

194 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

St
oc

ha
st

ic
 P

ro
ce

ss
es

M
ar

ko
v

Pr
oc

es
se

s
(T

 a
nd

 P
)

N
on

-M
ar

ko
vi

an
Pr

oc
es

se
s

Pu
re

ly
 R

an
do

m
Pr

oc
es

se
s (

on
ly

 P
)

(B
er

no
ul

li
Tr

ia
ls)

di
ffe

re
nt

ia
l

C
ha

pm
an

-K
ol

m
og

or
ov

 E
qu

at
io

n

de
te

rm
in

ist
ic

 P
ro

ce
ss

es
:

Th
e

Li
ou

vi
lle

 E
qu

at
io

n
Ju

m
p

Pr
oc

es
se

s:
Th

e
M

as
te

r
Eq

ua
tio

n
D

iff
us

io
n

Pr
oc

es
se

s:
Th

e
Fo

kk
er

-P
la

nc
k

Eq
ua

tio
n

e.
g.

 H
am

ilt
on

ia
n

Sy
st

em
s

e.
g.

 W
ie

ne
r

Pr
oc

es
s

e.
g.

 R
ad

io
ac

tic
e

D
ec

ay

Pi
ec

ew
ise

 D
et

er
m

in
ist

ic
 P

ro
ce

ss
es

 (P
D

P)

Figure 6.1: Overview of the theor of stochastic processes.

6.4. THE LIOUVILLE EQUATION 195

AL by partial integration. It is evident that we have

dx AL f x h x
i

dx gi 3 f
3xi

h x

i
f
3
3xi

gih x (6.12)

Since Eq. (6.12) holds for any function h x

A†
Lh x

i

3
3xi

gih x (6.13)

Inserting (6.13) into the differential Chapman–Kolmogorov equation (6.9) leads to the master equation for
a deterministic Markov process

3
3t

T x t x t
i

3
3xi

gi x T x t x t (6.14)

In statistical physics the above equation is called the Liouville equation.
The Liouville equation is the starting point for the microscopic description of matter for classical as

well as for quantum mechanical systems. It is one of the fundamental equations of statistical physics.

6.4.1 Example: Classical Statistical Mechanics
In order to give an example of the occurrence of the Liouville equation we consider a closed classical
system with N degrees of freedom, e.g., N particles in a three–dimensional box. We know from classical
mechanics, that the state of such a system is completely specified by the set of 6N independent variables
pN p1 pN and qN q1 qN , where pi and qi denote the momentum and the position of the
i–th particle.

If the system is Hamiltonian (Arnold [1978]), i.e., if we can define a Hamiltonian H p N qN , then the
time evolution of the momentum and of the position of the particles is given by Hamilton’s equations of
motion

d
dt

pi
3H
3qi

d
dt

qi
3H
3pi

In a real physical system it is not possible to specify exactly the state of the system. There is always
some uncertainty in the initial conditions. Therefore, we regard p N qN as a stochastic variable which is
initially distributed according to the joint probability density P N pN qN 0 . The dynamics of this proba-
bility distribution is described by the following Liouville equation

3
3t

PN A†
LPN

where

A†
L

N

i 1

3H
3pi

3
3qi

3H
3qi

3
3pi

The Liouville equation is often written in the following form

i
3
3t

PN pN qN t LPN pN qN t

196 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

where

L iA†
L

The operator L is called the Liouville operator. If the probability disribution at time t 0 is known the
above Liouville equation may be integrated formally to find the probability density at later times t

PN pN qN t exp iLt PN pN qN 0

The Liouville equation is the starting point for the evaluation of probability distributions in statistical
mechanics. Extensive use of the Liouville equation is done in kinetic theory. From the Liouville equation
it is possible to derive a hierarchy of equations for probability densities, the so–called BBGKY–hierarchy
from which kinetic equations may be derived (Reichl [1980]).

6.5 The Master Equation
Let us now introduce jump processes (Davies [1993]; Feller [1950]). We consider a system in a given
state x. In order to characterize a jump process, i.e., a process in which the system undergoes sudden
discontinuous changes of its state, we have to specify the probability for the system to remain in x during
the time interval dt

1 $ x dt

and the probability that the system jumps from state x to state x during the time interval dt

$ x Q x x dt

where

dx Q x x 1 (6.15)

Then,

E f x dt t 1 $ x dt f x $ x dt dx f x Q x x

From the definition of the generator we obtain immediately the generator of the jump process

AM f x $ x dx f x f x Q x x (6.16)

where we made use of Eq. (6.15). Again, in order to derive the Kolmogorov forward equation we have to
construct the adjoint operator to AM . We start from Eq. (6.7)

dx AM t f x T x t x t dx f x
3
3t

T x t x t (6.17)

and insert the generator (6.16) into the left–hand side of the above equation

dx AM t f x T x t x t

dx $ x dx f x f x Q x x T x t x t

dx dx $ x f x Q x x T x t x t

dx dx $ x f x Q x x T x t x t

6.5. THE MASTER EQUATION 197

By renaming x x and x x in the first line of the above equation we get

dx f x dx $ x Q x x T x t x t

dx f x dx $ x Q x x T x t x t

dx f x A†
M x T x t x t (6.18)

From Eq. (6.17) and from Eq. (6.18) we conclude that the differential Chapman–Kolmogorov equation of
a jump process reads

3
3t

T x t x t

dx $ x Q x x T x t x t dx $ x Q x x T x t x t (6.19)

Because of Eq. (6.15) we can write the above equation also in the form
3
3t

T x t x t

dx $ x Q x x T x t x t $ x T x t x t (6.20)

Usually the differential Chapman–Kolmogorov equation for a jump process is written in a more suggestive
form. To this end we introduce the total transition rate pro time unit for a transition from state x into state
x to occur

w x x $ x Q x x

and write the differential Chapman–Kolmogorov equation for a jump process in its final form

3
3t

T x t x t dx w x x T x t x t w x x T x t x t (6.21)

The above equation is called the master equation. The name master equation appears for the first time in a
paper by Nordsieck, Lamb and Uhlenbeck (Nordsieck et al. [1940]). It was chosen to denote an equation
from which all relevant equations and results can be derived.

In the physical literature Eq. (6.21) is written in the simplified form

3
3t

P x t dx w x x P x t w x x P x t (6.22)

This equation has the following meaning (van Kampen [1992]). Take a time t and a state x and consider
the solution of Eq. (6.22) for t t with the initial condition P x t - x x . This solution is the
conditional transition probability T x t x t of the Markov process for each choice of x and t . It is
important to keep in mind that Eq. (6.22) is always to be interpreted as an equation for T and not for P.

In the above form the physical meaning of the master equation is also evident. The master equation is a
balance equation for the probability to find the system in some state. The first term in the master equation
describes the gain of state due to transitions from the other states. The second term is the loss due to the
transitions from the given state into the others. Evidently, the term with x x does not contribute to the
integral.

If the state space of the stochastic process is discrete, i.e. all integer numbers n, the master equation for
the time evolution of P n t will assume the following discrete form

3
3t

P n t
n

w n n P n w n n P n t (6.23)

We will discuss in the next section how the stochastic processes defined in terms of a master equation can
be simulated numerically.

198 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

6.6 Stochastic Simulation
In principle there are two ways to treat numerically stochastic processes which are defined in terms of
master equations. In the first approach one solves numerically the master equation as a differential equation
for the probability density. Although this deterministic method is direct we will not consider it here for the
following reason. It turns out that the direct numerical solution of the master equation is not particularly
efficient from a computational point of view. The second approach, which we will introduce in this section
relies upon the simulation of the underlying stochastic process. In other words one considers a particle and
lets it jump from one state to another with certain given transition rates. Such a procedure is called the
generation of a realization of the stochastic process. If a sufficiently great number of realizations has been
generated the interesting statistical quantities can be evaluated as ensemble averages.

In fact the numerical performance of the direct approach gets worse compared to the stochastic simu-
lation with increasing dimension of the system considered. We already met a similar situation, when we
considered numerical algorithms for the computation of integrals. There the direct integration of multidi-
mensional integrals turned out to be less efficient than the Monte–Carlo integration.

In order to formulate a stochastic simulation algorithm we consider for simplicity the master equation
of a one–step process. Sometimes such processes are also called birth–and–death processes. The range of
such processes consists of all integers n and the matrix of the transition probabilities per unit time allows
only jumps between adjacent sites

w n n 0 for n n 1

and

w n n 0 otherwise

Exploiting the above structure we can write the master equation for the discrete one–dimensional process
(6.23)

Ṗ n t w n n 1 P n 1 t w n n 1 P n 1 t
w n 1 n P n t w n 1 n P n

Now it is convenient to introduce the following notation

r n 1 w n n 1
g n 1 w n n 1

so that the master equation for a general one–step process may be written in the following suggestive form

Ṗ n t r n 1 P n 1 t g n 1 P n 1 t r n g n P n t (6.24)

Let us now assume that at time t the particle is in state n. The total transition rate to leave this state, i.e.
to jump out of this state either to state n 1 or to state n 1, is given by

$ n r n g n (6.25)

As we already know the quantity $ n dt is the probability that the next jump occurs within the infinitesimal
time step dt. Accordingly the probability that the next jump occurs after N 1 time steps dt is given by

q 1 $ n dt N$ n dt

where 1 $ n dt N denotes the probability that no jump occurs during the first N steps. We now write
N 1 dt t, so that we have

q 1
$ n t
N 1

N
$ n dt

6.6. STOCHASTIC SIMULATION 199

We now perform the limit dt 0 for fixed t. This limit implies, of course, N . and hence the probability
that a jump occurs after time t is given by

q $exp $t dt f t dt

The waiting time distribution for the time of the next jump is an exponential distribution. It is now clear
what we have to do in order to determine the time of the next jump in the stochastic simulation. We
simply have to draw random times ,, which are distributed according to the density f t . Since f t is an
exponential distribution, these random times can easily be drawn with the help of the inversion method

,
1

$ n
log 5 (6.26)

where 5 is a uniformly distributed random number on the interval 0 1 .
Having determined the stochastic time of the next jump we still have to decide which transition actually

takes place. We have only two possibilities: In case of a jump the particle can reach the state n 1 with
probability

y1
r n
$ n

or the state n 1 with probability

y2 1 y1
g n
$ n

(6.27)

Thus, the algorithm for the simulation of a one–step–process reads:

(i) Draw a uniformly distributed random number 5 1 on 0 1 and compute the random jump time ,
according to (6.26).

(ii) Draw a uniformly distributed random number 5 2 on 0 1 . If the condition 52 y1 is satisfied we
set) 1. Otherwise we set) 1.

(iii) Advance the process

t t ,

n n)

The flow chart of the algorithm can be seen in Fig. (6.6). The algorithm has been implemented in
the program onestep.m whose listing can be seen below. The program onestep.m makes use of
a function called decayymaster.m in which the transitions rates g n and r n are specified. In the
following subsection we will discuss three typical one–step processes. The specific form of the function
decaymaster will be given there.

Listing of the program onestep.m

% o n e s t e p Program to s i m u l a t e a one s t e p p r o c e s s
c l e a r ; he lp o n e s t e p ; % Clea r memory and p r i n t heade r
s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6) ;

5 n s t a r t = i n p u t (’ En te r i n i t i a l va lue of N (5 0 0) ’) ;
tend = i n p u t (’ En te r f i n a l t ime in s (3 0) ’) ;
n r e a l = i n p u t (’ En te r number of r e a l i z a t i o n s (1 0) ’) ;
T s t a r t = cput ime ;

10 t s t a r t =0;
nmes= z e r o s (1 , tend +1) ;

200 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

Initialize:

j = 1 to number of realizations

all
realizations

done

Plot Results

YES

NO

final time
reached?

record as required for
sampling and plotting

Advance the process:

while t < tend

Pick random jump time:

Pick increment:

YES

NO

Figure 6.2: Flow chart of a stochastic simulation of a one–step process. The symbols used are explained in the text.

6.6. STOCHASTIC SIMULATION 201

nmes (1)= n s t a r t ;
nmes2 = z e r o s (1 , tend +1) ;
nmes4 = z e r o s (1 , tend +1) ;

15 nmes2 (1) = 0 ;
nmes4 (1) = 0 ;
tmes =[0 : tend +1] ;
% r e a l i z a t i o n s loop
for j = 1 : n r e a l

20 t = t s t a r t ;
n= n s t a r t ;
imes =2;
while (t =tend)

%d e t e r m i n e one s t e p jump p r o b a b i l i t i e s per u n i t t ime
25 % t r a n s i t i o n r a t e s for r a d i o a c t i v e decay

%[g , r]= decaymas te r (n) ;
%
%t r a n s i t i o n r a t e s for t he Po i s son p r o c e s s
%[g , r] = p o i s s o n m a s t e r (n) ;

30 %
%t r a n s i t i o n r a t e s for t he c o n t i n u o u s t ime random walk
%[g , r] = wa lkmas te r (n) ;
% e v a l u a t e t o t a l jump r a t e
g =0.4 n ;

35 r =0.5 n ;
lambda =g+r ;
y1=r / lambda ;
% draw e x p o n e n t i a l l y d i s t r i b u t e d random number
t au = log (rand (1 , 1)) / lambda ;

40 t = t + tau ;
while t =tmes (imes)

nmes (imes)= nmes (imes)+ n ;
nmes2 (imes)= nmes2 (imes)+ n n ;
nmes4 (imes)= nmes4 (imes)+ n n n n ;

45 imes =imes +1;
i f imes =(tend +2)

break
end

end
50 i f rand (1 , 1) y1

% jump from n to (n 1)
n=n 1;

e l s e
% jump from n to (n +1)

55 n=n +1;
end

% end of t ime i n t e g r a t i o n
end

% end of r e a l i z a t i o n loop
60 end

% n o r m a l i z e mean v a l u e s and v a r i a n c e
nmes=nmes / n r e a l ;
nmes (1)= nmes (1) n r e a l ;
nmes2 =nmes2 / n r e a l ;

65 nmes4 =nmes4 / n r e a l ;
sdev (1) = 0 ;
sdev2 (1) = 0 ;
for imes =2: tend +1

sdev (imes)= s q r t ((nmes2 (imes) nmes (imes) nmes (imes)) / n r e a l) ;

202 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

70 sdev2 (imes) = s q r t ((nmes4 (imes) nmes2 (imes) nmes2 (imes)) / n r e a l) ;
end
d i sp (’ CPUTIME : ’) ;
cput ime T s t a r t
i f n r e a l ==1

75 %p l o t one r e a l i z a t i o n of the p r o c e s s
p l o t (0 : tend , nmes , ’ x ’) ;
%t i t l e (’ R a d i o a c t i v e decay ’) ;
%t i t l e (’ Po i s son p r o c e s s ’) ;
t i t l e (’ Con t inuous t ime random walk ’) ;

80 x l a b e l (’ t ime ’) ;
y l a b e l (’ n ’) ;
e l s e

%p l o t r e s u l t of s i m u l a t i o n wi th e r r o r b a r s
s u b p l o t (2 , 1 , 1)

85 e r r o r b a r (0 : tend , nmes , sdev) ;
%t i t l e (’ R a d i o a c t i v e decay ’) ;
%t i t l e (’ Po i s son p r o c e s s ’) ;
t i t l e (’ Con t inuous t ime random walk ’) ;
x l a b e l (’ t ime ’) ;

90 y l a b e l (’ n ’) ;
s u b p l o t (2 , 1 , 2)
e r r o r b a r (0 : tend , nmes2 , sdev2) ;
x l a b e l (’ t ime ’) ;
y l a b e l (’ n ˆ 2 ’) ;

95 end
The program will be applied in the next subsections.

6.6.1 Radioactive Decay
As a first example we consider the master equation description of the radioactive decay. To this end let
P n t be the probability density to find n radioactive nuclei at time t. The probability for a nucleus to
decay in unit time will be denoted by &. The radioactive decay is a typical example of a one–step process.
It is defined through the transition rates g n 0 and r n &n, where & is the decay constant. Substitution
of the above g n and r n into the master equation for the one–step process (6.24) yields the master
equation of the radioactive decay

3
3t

P n t & n 1 P n 1 t &nP n t (6.28)

Before we apply the stochastic simulation algorithm to the generation of trajectories of the stochastic
process we consider for one moment the above master equation.

The above equation has to be solved for the initial condition P n 0 - n n 0 . It is interesting to
establish the relation between the master equation and the macroscopic description in terms of differential
equations we already met in the introduction. To this end we consider

.

n 0
nṖ n t &

.

n 0
n n 1 P n 1 &

.

n 0
n2P n

&
.

n 0
n 1 nP n &

.

n 0
n2P n

&
.

n 0
nP n

Thus we have found the following dynamical equation for the average of the stochastic variable N t
d
dt

N t & N t (6.29)

6.6. STOCHASTIC SIMULATION 203

!5 0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450

500
Radioactive decay

time

nu
m

be
r o

f n
uc

le
i

Figure 6.3: Stochastic simulation of radioactive decay. The initial number of decaying nuclei is n0 100. tend is 30
and the ensemble average was taken over 10 realizations. The decay rate is & 0 1.

Note that the mean value of the stochastic process obeys the differential equation for the concentration. It
is clear that the above equation has the following solution for the initial value N 0 n 0

N t n0 exp &t

Let us now turn to the stochastic simulation. In order to use the program onestep.m we still have to
specify the function decaymaster.m. The listing of this function can be seen below.

Listing of the function decaymaster.m

f u n c t i o n [g , r]= decaymas te r (n)
%g =1;
%r =0;
gamma = 0 . 1 ;

5 g =0;
r =gamma n ;

Now we are in the position to simulate the stochastic process of radioactive decay. We run the program
for the following parameters n0=500, tend=30, and nreal=10. The decay rate is & 0 1. The result
of the simulation can be seen in Fig. (6.6.1).

6.6.2 The Poisson Process
A further important one–step process is the Poisson process, which is defined by

r n 0; g n q const (6.30)

Inserting the above transition rates into the master equation (6.24) we get the master equation defining the
Poisson process

3
3t

P n t n t q P n 1 t n t P n t n t (6.31)

204 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

The Poisson process describes a random walk over the integers 0 1 2 . The steps of the walk are all of
length l and are only to the right. They are performed at random times with probability per unit time equal
to q.

It is instructive to consider the analytical solution of the above master equation (6.31). The analytical
solution will be constructive with the help of a very useful technique which is based upon the characteristic
function

G s t exp ins
n

P n t n t exp ins

The equation of motion for the characteristic function is easily obtained with the help of (6.31). We find

3
3t

G s t q exp is 1 G s t

Assuming that at time t the one–sided random walk starts at n 0, the initial condition of the above
differential equation reads

G s 0 1

In this case the solution of the above differential equation of motion for the characteristic function is easily
found. It reads

G s t exp tq exp is 1

To read out the analytical solution for the transition probability P n t 0 0 it is convenient to write the
above solution in the form

G s t exp tq exp tqexp is
.

n 0
exp tq

tqexp is n

n!

For s 0 and from the definition of the characteristic function it follows immediately that

P n t 0 0 exp tq
tq n

n!

which evidently is a Poisson distribution. As we know the characteristic function allows the determination
of all moments of the stochastic process through the relation

nm t i
3
3s

G s t
s 0

Applying the above formula we find

n t qt

and

n2 t qt qt 2

Accordingly, the variance of the Poisson process is given by

Var n n2 t n t 2 qt

The simulation of the Poisson process is straightforward. We make use of the program onestep.m and
simply write a new function poissonmaster.m according to the master equation (6.31) whose listing
can be seen below.

6.6. STOCHASTIC SIMULATION 205

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
Poisson process

time

n

Figure 6.4: Stochastic simulation of the Poisson process. The one–sided random walk starts at nstart=0. tend is
30 and nreal=1. The jump rate is q=1.

Listing of the function poissonmaster.m

f u n c t i o n [g , r]= p o i s s o n m a s t e r (n)
%q = 1 . 0 ;
q =10 .0 ;
g=q ;

5 r =0;

To begin we generate one realization of the Poisson process. To this end we run the program with the
following parameters: nstart=0, tend=30, nreal=1. In the function poissonmaster we have
chosen the transition rate to be q=1. One realization of the Poisson process can be seen in Fig. (6.6.2). In
Fig. (6.6.2) we show an ensemble average over 20 realizations of the Poisson process. The other parameters
are unchanged. It is interesting to consider the limit of continuous space for the Poisson process. Let us
denote the distance travelled by

x nl

As a function of the new stochastic variable x the characteristic function G̃ is

G̃ s t exp isx exp tq exp ils 1

We perform the limit l 0 keeping

ql v const

and obtain keeping only the terms linear in l in the Taylor expansion of exp ils

lim
l 0

G̃ s t exp itvs

So, in the continuum limit the transition probability is

P x t 0 0 - x vt

206 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

!5 0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Poisson process

time

n

Figure 6.5: Stochastic simulation of the Poisson process. The one–sided random walk starts at nstart=0. tend is
30 and nreal=20. The jump rate is q=1.

Thus, the Poisson process has a deterministic limit. This can also be seen by considering, that in the same
limit the master equation for the Poisson process turns into the Liouville equation

3
3t

P x t 0 0 v
3
3x

P x t 0 0

whose solution is the deterministic process we have just derived. This behaviour can also be seen in the
simulation. To this end we run the program onestep with the function poissonmaster choosing
q=10. The result of the simulation can be seen in Fig. (6.6.2). As we can see for a larger value of q the
variance of the process gets smaller. Thus the dynamics of the process is nearly deterministic.

6.6.3 The Continuous Time Random Walk
In this subsection we want to consider the master equation for the one–dimensional random walk. The
steps of the walker are of length l. The positions of the walker are nl and are labelled by the integer n. We
already considered the random walk problem in Chapter 2. There the walker was allowed to take steps to
the left and to the right at some discrete times N,, where the time step , was fixed. Now, we consider a
random walk which is continuous in time. The walker is allowed to take steps to the left or to the right with
the probability per unit time q. This process is again described by a master equation for a one–step process
(6.24) by choosing

r n g n q

Thus the master equation for the continuous time random walk reads
3
3t

P n t n t q P n 1 t n t P n 1 t n t (6.32)

2P n t n t

Again the above master equation is easily solved with the help of the characteristic function G s t . It is
easy to check that the characteristic function satisfies the equation

3
3t

G s t q exp is exp is 2 G s t

6.6. STOCHASTIC SIMULATION 207

!5 0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350
Poisson process

time

n

Figure 6.6: Stochastic simulation of the Poisson process. The one–sided random walk starts at nstart=0. tend is
30 and nreal=20. The jump rate is q=10.

Assuming that the walker starts at time t 0 in n 0 we find G s 0 1 and the solution of the above
equation reads

G s t exp exp is exp is 2 tq

With the help of the above expression for the characteristic function the moments are easily evaluated. We
find

n t 0
n2 t 2tq

Again we find the typical behaviour of a diffusive process.
The continuous time random walk is also easily simulated with the help of the program onestep. To

this end we have to write a new function walkmaster.m which implements the appropriate transition
rates.

Listing of the function walkmaster.m

f u n c t i o n [g , r]= wa lkmas te r (n)
q = 1 . 0 ;
g=q ;
r =q ;

We run the program with the following parameters: nstart=0, nreal=10, tend=30, and q=1.
The result of the simulation can be seen in Fig. (6.6.3).

It is of particular interest to look at the continuous space limit of the continuous time random walk.
Again we write for the distance travelled by the walker x nl. The characteristic function as a function of
x reads

G̃ s t G sl t exp ixs
exp exp ils exp ils 2 tq

208 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

!5 0 5 10 15 20 25 30 35
!0.5

0

0.5
Continuous time random walk

time

n

!5 0 5 10 15 20 25 30 35
0

20

40

60

80

time

n2

Figure 6.7: Stochastic simulation of the continuous time random walk. The random walk starts at nstart=0. tend
is 30 and nreal=20. The jump rate is q=1.

The limit of infinitesimally small steps l 0 ql const. leads to

G̃ s t exp s2tD (6.33)

where

D lim
l 0

l2q

The quantity D can be interpreted as the mean square distance traveled per unit time. The characteristic
function (6.33) is the characteristic function of a Gaussian process of the form

P x t 0 0
1

4"Dt 1 2 exp x2 4Dt

This is the transition probability of a so–called Wiener process, which can be regarded as a continuous time
random walk in the limit of infinitesimally small step size. We will consider the Wiener process in more
detail in the next section.

The following remark may serve as an introduction to the next section. Of course, we can also expand
directly the master equation (6.32) as a function of x up to second order terms in l and get

3
3t

P x t 0 0 l2q
32

3x2 P x t 0 0

which is a special type of Fokker–Planck equation, as we will see in the next section.

6.7 The Fokker–Planck Equation
In this section we want to derive the Fokker–Planck equation (Risken [1989]), which is a special type of
master equation (van Kampen [1992]) in the limit of small jumps. We begin by expressing the transition
probability w as a function of the size r of the jump and of the starting point

w y y w y ;r ; r y y

6.7. THE FOKKER–PLANCK EQUATION 209

The master equation (6.22) then reads

3
3t

P y t drw y r;r P y r t drw y; r P y t (6.34)

In order to consider the limit of small jumps essentially two assumptions will be needed. The first is that
the function w y;r will be a sharply peaked function of r and will vary slowly with y. To be more precise
we assume that a - 0 exists such that

w y ;r 0 for r -

w y %y;r w y ;r for %y -

The second assumption is that the solution P y t of the master equation in this limit will be a slowly
varying function of y.

If these assumptions hold it is safe to expand the shift from y to y r in the first integral in Eq. (6.34)
in a Taylor series

3
3t

P y t
.

) 0

1)

)!
3
3y

)

a) y P y t P y t
.

.

drw y; r (6.35)

where we have defined

a) y
.

.

drr)w y;r

Since the zeroth term in the sum and the second term of Eq. (6.35) cancel the small jumps expansion of the
master equation reads

3
3t

P y t
.

) 1

1)

)!
3
3y

)

a) y P y t (6.36)

The above expansion is called the Kramers–Moyal expansion. Formally, we can write

3
3t

P y t A†
KM y P y t (6.37)

where we introduced the adjoint generator

A†
KM y

.

) 1

1)

)!
3
3y

)

a) y

It is easy to show by partial integration that the corresponding generator reads

AKM y
.

) 1

1
)!

a) y
3
3y

)

It is clear that dealing with the Kramers–Moyal expansion will not be easier than dealing with the original
master equation.

A particularly interesting and useful approximation to a jump process is obtained by keeping only terms
up to the second order in)

3
3t

P y t
3
3y

a1 y P y t
1
2
32

3y2 a2 y P y t (6.38)

The above equation is called the Fokker–Planck equation. The first term on the right–hand side is usually
called the drift term since it is essentially Liouvillian. The second term on the right–hand side is the
diffusion term. In a later section we will learn how to deal with this equation.

210 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

6.7.1 The Wiener Process
Let us consider the important special case of vanishing drift, i.e. a 1 0, and diffusion coefficient equal to
one, i.e. a2 1. The generator takes the form

AW A†
W

1
2
32

3y2 (6.39)

and it defines a Wiener process. We already met the corresponding Fokker–Planck equation, when we
considered the continuous space limit of the the continuous time random walk. Now we want to write
down this Fokker–Planck equation in the form

3
3t

T w t w0 t0
1
2
32

3x2 T w t w0 t0

The above equation can easily be solved with the help of the characteristic function

G s t dwT w t w0 t0 exp isw

where we have assumed that the initial condition on the transition probability is

T w t0 w0 t0 - w w0

The characteristic function satisfies the equation

3
3t

G s t
1
2

s2G s t

whose solution is, given the initial condition G s t0 exp isw0 ,

G s t exp isw0 s2 t t0 2

Performing the inverse Fourier transformation of the above expression we find the transition probability

T w t w0 t0
1

2" t t0 1 2 exp w w0
2 2 t t0 (6.40)

Thus, the transition probability density is a Gaussian with

W t w0

W t w0
2 t t0

An initially sharp peaked distribution spreads in time. It is important to make some remarks on the Wiener
process W t .

The mean square of the Wiener process diverges linearly with time. As we already know this behaviour
is typical for diffusion processes and the trajectories of the Wiener process are very variable. We will look
at the trajectories of the Wiener process soon.

Although the paths of the Wiener process are continuous they are not differentiable since the derivative
at any point is almost certainly infinite (Gardiner [1990]).

The Wiener process plays a central role in the description of diffusion processes by means of stochastic
differential equations. The reason is that the increments of the Wiener process

%Wi W ti W ti 1 Wi Wi 1

are statistically independent. This can be seen in the following way. Let us consider the joint probability
density

P wn tn;wn 1 tn 1; ;w0 t0
n 1

i 0
T wi 1 ti 1 wi ti P w0 t0

6.7. THE FOKKER–PLANCK EQUATION 211

Exploiting the explicit form of the transition probabilities (6.40) the above joint probability density can be
cast in the following form

P wn tn;wn 1 tn 1; ;w0 t0
n 1

i 0

1
2" ti 1 ti 1 2 exp wi 1 wi

2 2 ti 1 ti P w0 t0

Expressed in terms of the increments %Wi the above equation reads

P %wn %tn;%wn 1 %tn 1; ;w0 t0
n

i 1

1
2"%ti 1 2 exp %w2

i 2%ti P w0 t0

where we have introduced the variables

%ti ti ti 1

Thus, the increments %Wi are evidently statistically independent and are distributed according to

P %w %t
1

2"%t 1 2 exp %w2 2%t

At this point it is convenient to introduce a short hand notation for Gaussian distributed random num-
bers. The Gaussian random variable X with mean m and variance ' 2 will be denoted by

X N m '2

In particular we will name the random variable 5

5 N 0 1

the unit normal random variable. In this notation we can write for the Wiener W t process

W t N W0 t t0

and for the increment %W

%W t N 0 %t

For later convenience we give two rules concerning the transformation of Gaussian random variables.
First, let a and b be two numbers, then we have

a bN m '2 N a bm b2'2

In particular we have for a unit normal random variable

a b5 N a b2

Second, if N m1 '2
1 and N m2 '2

2 are statistically independent, then

N m1 '2
1 N m2 '2

2 N m1 m2 '2
1 '2

2

The above rule expresses the fact that, as we know, that Gaussian random variables remain Gaussian dis-
tributed under addition. The rules just given can be demonstrated with the help of the random variable
transformation theorem.

With the help of the first above rule it is clear that the increment %W can be expressed as

%W %t5

212 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

where 5 is the unit normal random variable.
Let us now generate numerically some realizations of the Wiener process. To this end we need a way

of calculating for a given value of the Wiener process W t at time t the value of the process at time t %t.
We will present an algorithm which is exact for any positive value of %t (Gillespie [1992]).

The algorithm exploits the fact that we know analytically the conditional transition probability density.
T w t w t is a Gaussian with mean w and variance'2 2 t t . Accordingly, given W t the increment
%W t

W t %t W t %W t (6.41)

is distributed according to a Gaussian with zero mean and variance ' 2 2%t. The above formula is the
update formula for the algorithm for the generation of realizations of the Wiener process. The algorithm
essentially consists of the following steps:

(i) Let W t be given.
(ii) Draw a Gaussian distributed random number %W with zero mean and variance ' 2 2%t).
(iii) Advance the stochastic process according to the formula (6.41).
(iv) Goto (i) until the desired final time is reached.
A flow diagram of the program wiener.m can be seen in Fig. (6.7.1).

Listing of the function wiener.m

% wiener Program to g e n e r a t e r e a l i z a t i o n s of the Wiener p r o c e s s
c l e a r ; he lp wiener ; % Clea r memory and p r i n t heade r
s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6) ;

5 x s t a r t = i n p u t (’ En te r i n i t i a l va lue of x (0) ’) ;
tend = i n p u t (’ En te r f i n a l t ime in s (5) ’) ;
d e l t a t = i n p u t (’ En te r d e l t a t in s (0 . 0 1) ’) ;
n r e a l = i n p u t (’ En te r number of r e a l i z a t i o n s (1 1 0 0 0) ’) ;
t s t a r t =0;

10 ns t ep = tend / d e l t a t ;
s igma = s q r t (d e l t a t) ;
xmes= z e r o s (1 , ns t ep +1) ;
xmes2 = z e r o s (1 , ns t ep +1) ;
xmes4 = z e r o s (1 , ns t ep +1) ;

15 % r e a l i z a t i o n s loop
for j = 1 : n r e a l

t = t s t a r t ;
x= x s t a r t ;
% g e n e r a t e v e c t o r of g a u s s i a n d i s t r i b u t e d random numbers

20 dw= randn (1 , ns t ep) ;
for i =1: ns t ep

x=x + sigma dw(i) ;
xmes (i +1)= xmes (i + 1) + x ;
xmes2 (i +1)= xmes2 (i +1) + x x ;

25 xmes4 (i +1)= xmes4 (i +1) + x ˆ 4 ;
end

% end of r e a l i z a t i o n loop
end
% n o r m a l i z e mean v a l u e s and v a r i a n c e

30 xmes=xmes / n r e a l ;
xmes (1)= xmes (1) n r e a l ;
xmes2 =xmes2 / n r e a l ;
xmes4 =xmes4 / n r e a l ;
sdev (1) = 0 ;

35 sdev2 (1) = 0 ;

6.7. THE FOKKER–PLANCK EQUATION 213

Initialize:

j = 1 to number of realizations

all
realizations

done

Plot Results

YES
NO

final time
reached?

record as required for
sampling and plotting

For t = tstat:deltat:tend

Draw Wiener increment according to

YESNO

Advance the process:

Figure 6.8: Flow diagram of the program wiener.m

214 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

0 10 20 30 40 50
!8

!6

!4

!2

0

2

4

6
Wiener process

time

x

Figure 6.9: One realization of the Wiener process. The parameters used in the simulation are xstart=0, tend=50,
deltat=0.01, and nreal=1.

for imes =2: ns t ep +1
sdev (imes)= s q r t ((xmes2 (imes) xmes (imes) xmes (imes)) / n r e a l) ;
sdev2 (imes)= s q r t ((xmes4 (imes) xmes2 (imes) xmes2 (imes)) / n r e a l) ;

end
40 % p l o t r e s u l t s

t ime =[0 : ns t ep] d e l t a t ;
i f n r e a l ==1

%p l o t one r e a l i z a t i o n of the p r o c e s s
p l o t (t ime , xmes) ;

45 % t i t l e (‘ Wiener p r o c e s s ’) ;
x l a b e l (’ t ’) ;
y l a b e l (’ x ’) ;
e l s e

%p l o t r e s u l t of s i m u l a t i o n wi th e r r o r b a r s
50 s u b p l o t (2 , 1 , 1)

e r r o r b a r (t ime , xmes , sdev) ;
t i t l e (’ Wiener p r o c e s s ’) ;
x l a b e l (’ t ime ’) ;
y l a b e l (’ x ’) ;

55 s u b p l o t (2 , 1 , 2)
e r r o r b a r (t ime , xmes2 , sdev2) ;
x l a b e l (’ t ime ’) ;
y l a b e l (’ x ˆ 2 ’) ;

end

Let us run the program two times with the following parametersxstart=0, tend=50, deltat=0.01,
nreal=1 in order to generate two realizations of the Wiener process. The two independent realizations
can be seen on Figs. (6.7.1) and (6.7.1). The great variability of the realizations is evident. In Fig. (6.7.1)
we show an ensemble average of the Wiener process over 1000 realizations.

6.7. THE FOKKER–PLANCK EQUATION 215

0 10 20 30 40 50
!7

!6

!5

!4

!3

!2

!1

0

1

2
Wiener process

time

x

Figure 6.10: One realization of the Wiener process. The parameters used in the simulation are xstart=0,tend=50,
deltat=0.01, and nreal=1.

!1 0 1 2 3 4 5 6
!0.05

0

0.05

0.1

0.15
Wiener process

time

x

!1 0 1 2 3 4 5 6
0

2

4

6

time

x2

Figure 6.11: One realization of the Wiener process. The parameters used in the simulation are xstart=0, tend=5,
deltat=0.01, and nreal=1000.

216 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

6.7.2 The Ornstein–Uhlenbeck Process
Up to now we have considered only Fokker–Planck equations without drift. As a simple example of a
Fokker–Planck equation with an additional linear drift we consider

3
3t

T x t x t
3
3x

qxT x t x t
1
2

D
32

3x2 T x t x t (6.42)

The above Fokker–Planck equation defines the Ornstein–Uhlenbeck process.
Again, we can look at the equation of motion for the characteristic function of the Ornstein–Uhlenbeck

process

G s t
.

.

dxexp isx T x t x t

The equation reads

3
3t

G s t qs
3
3s

G s t
1
2

Ds2G s t

The above partial differential equation may be solved by the method of characteristics (Gardiner [1990]).
Its solution for T x t0 x0 t0 - x x0 requires the initial condition

G s 0 exp ix0s

and reads

G s t exp
Ds2

4q
1 exp 2q t t0 isx exp q t t0

Hence, the transition probability T x t x 0 is a Gaussian with mean

X t x0 exp q t t0 (6.43)

and variance

Var X t
D
2q

1 exp 2q t t0 (6.44)

Since the Ornstein–Uhlenbeck process is a Gaussian process we can write

X t N X0 exp 2q t t0
D
2q

1 exp 2q t t0

In contrast to the Wiener process the Ornstein–Uhlenbeck process has a stationary distribution in the limit
t . which is a Gaussian with zero mean and variance D 2q.

We now turn to the numerical simulation of realizations of the Ornstein–Uhlenbeck process. The
problem is to find a way of determining from the value of the process X at time t its value at a later time
t %t. As for the generation of trajectories of the Wiener process it is possible to construct an update
formula for the Ornstein–Uhlenbeck process, which is exact for any positive value of the time increment
%t (Gillespie [1996]). In order to derive an update formula we replace in Eqs. (6.43) and (6.44) for the
mean and variance of the Ornstein–Uhlenbeck process t by t %t and t 0 by t and accordingly x0 by X t .
Since we know that the Ornstein–Uhlenbeck process is Gaussian distributed it is now clear that the update
formula reads

X t %t X t exp qt
D
2q

1 exp 2q%t
1 2

5 (6.45)

6.7. THE FOKKER–PLANCK EQUATION 217

where 5 is a Gaussian distributed random number with zero mean and unit variance. Since we know how
to generate Gaussian distributed random numbers the algorithm for the generation of realizations of the
Ornstein–Uhlenbeck process with diffusion constant D and inverse relaxation time q reads

(i) Specify the values of D, q, x0, %t.
(ii) Compute the constant coefficients

µ exp q%t

and

'
D
2q

1 exp 2q%t
1 2

(iii) Initialize setting X x0 and t 0.
(iv) Replace t by t %t. Terminate the simulation if t exceeed t end.
(v) Generate a Gaussian distributed random number 5 and update the process replacing X by µX '5.
(vi) Goto (iv).
In figure 6.7.2 we show the flow diagram of the program ornstein.mwhich will be used to generate

the realizations. The listing of the program can be seen below.

Figure 6.12: The flow diagram of the simulation of the Ornstein-Uhlenbeck process.

Listing of the program ornstein.m

% o r n s t e i n Program to g e n e r a t e r e a l i z a t i o n s of the
% O r n s t e i n Uhlenbeck p r o c e s s wi th the help of an e x a c t
% a l g o r i t h m
c l e a r ; he lp o r n s t e i n ; % Clea r memory and p r i n t heade r

5 s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6) ;

x s t a r t = i n p u t (’ En te r i n i t i a l va lue of x (5) ’) ;
q = i n p u t (’ En te r va lue of d r i f t q (1) ’) ;
D = i n p u t (’ En te r va lue of d i f f u s i o n c o n s t a n t D (1) ’) ;

10 tend = i n p u t (’ En te r f i n a l t ime in s (5) ’) ;
d e l t a t = i n p u t (’ En te r d e l t a t in s (0 . 0 1) ’) ;
n r e a l = i n p u t (’ En te r number of r e a l i z a t i o n s (1 1 0 0 0) ’) ;
t s t a r t =0;
ns t ep = tend / d e l t a t ;

15 sigma2 =D (1 exp (2 q d e l t a t)) ;
s igma2 =sigma2 / (2 q) ;
sigma = s q r t (sigma2) ;
muconst =exp (q d e l t a t) ;
xmes= z e r o s (1 , ns t ep +1) ;

20 xmes (1)= x s t a r t ;
xmes2 = z e r o s (1 , ns t ep +1) ;
xmes4 = z e r o s (1 , ns t ep +1) ;
% r e a l i z a t i o n s loop
for j = 1 : n r e a l

25 t = t s t a r t ;
x= x s t a r t ;
% g e n e r a t e v e c t o r of g a u s s i a n d i s t r i b u t e d random numbers
dw= randn (1 , ns t ep) ;
for i =1: ns t ep

218 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

30 x=x muconst + sigma dw(i) ;
xmes (i +1)= xmes (i + 1) + x ;
xmes2 (i +1)= xmes2 (i +1) + x x ;
xmes4 (i +1)= xmes4 (i +1) + x ˆ 4 ;

end
35 % end of r e a l i z a t i o n loop

end
% n o r m a l i z e mean v a l u e s and v a r i a n c e
xmes=xmes / n r e a l ;
xmes (1)= xmes (1) n r e a l ;

40 xmes2 =xmes2 / n r e a l ;
xmes4 =xmes4 / n r e a l ;
sdev (1) = 0 ;
sdev2 (1) = 0 ;
for imes =2: ns t ep +1

45 sdev (imes)= s q r t ((xmes2 (imes) xmes (imes) xmes (imes)) / n r e a l) ;
sdev2 (imes)= s q r t ((xmes4 (imes) xmes2 (imes) xmes2 (imes)) / n r e a l) ;

end
% p l o t r e s u l t s
t ime =[0 : ns t ep] d e l t a t ;

50 i f n r e a l ==1
%p l o t one r e a l i z a t i o n of the p r o c e s s
p l o t (t ime , xmes) ;

% t i t l e (’ O r n s t e i n Uhlenbeck p r o c e s s ’) ;
x l a b e l (’ t ’) ;

55 y l a b e l (’ x ’) ;
e l s e

%p l o t r e s u l t of s i m u l a t i o n wi th e r r o r b a r s
s u b p l o t (2 , 1 , 1)
e r r o r b a r (t ime , xmes , sdev) ;

60 t i t l e (’ O r n s t e i n Uhlenbeck p r o c e s s ’) ;
x l a b e l (’ t ime ’) ;
y l a b e l (’ x ’) ;
s u b p l o t (2 , 1 , 2)
e r r o r b a r (t ime , xmes2 , sdev2) ;

65 x l a b e l (’ t ime ’) ;
y l a b e l (’ x ˆ 2 ’) ;

end

One realization of the Ornstein–Uhlenbeck process generated with help of the algorithm we have just
constructed can be seen in Fig. (6.7.2)

The average over 10 realizations of the Ornstein–Uhlenbeck process can be seen in Fig. (6.7.2).

6.8 Lévy or Stable Distributions

In this section we address again the problem of the random walk. As we already know the canonical
application of the random walk is the theory of Brownian motion. The chaotic motion of the Brownian
particles over the length scale % and time scale , is modelled by a random walk on a lattice of spacing %,
while the steps take place at equal time intervals ,. It is the aim of this chapter to go ”beyond Brownian
motion” Klafter et al. [1996] and to look at fractal generalizations of Brownian motion which have proven to
be a rich field in probability theory, statistical physics, chaotic dynamics, and, last not least, in economics.

We know already that from a mathematical point of view the problem of the random walk is the prob-
lem of the addition of independent (usually identically distributed) random variables. For example, if the
individual steps in a one–dimensional walk have displacement µ and variance '2, then a simple application
of the Central Limit Theorem tells us that the asymptotic probability density function Pn for the position

6.8. LÉVY OR STABLE DISTRIBUTIONS 219

0 2 4 6 8 10
!2

!1

0

1

2

3

4

5
Ornstein!Uhlenbeck process

time

x

Figure 6.13: One realization of the Ornstein–Uhlenbeck process. The parameters used in the simulation are xs-
tart=5, tend=10, deltat=0.01, nreal=1, q=1, and D=1.

!0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6
Ornstein!Uhlenbeck process

time

<x
>

!0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

time

<x
2 >

Figure 6.14: The average over 10 realizations of the Ornstein–Uhlenbeck process. The parameters used in the simu-
lation are xstart=5, tend=50, deltat=0.01, nreal=10, q=1, and D=1.

220 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

Xn after n steps is given by the Gaussian density with mean nµ and variance n'2:

Pn x
1

2"n'2
exp

x nµ 2

2n'2

This is the basic idea of the random walk. To put it differently, the Central Limit Theorem states, that if
X1, , XN are Gaussian distributed random variables with zero mean and variance ' 2, the new stochastic
variable

X
1
N

N

i 1
Xi

has the same probability density function as the Xi. Now let us consider a slight generalization of the ran-
dom walk. We consider an N–step random walk in one dimension, with each step of length x governed by
the same probability density p x , with zero mean. Note, that we expressively do not make any assumption
about the variance! The French mathematician Paul Lévy 1 posed the following question: When does the
probability PN X for the sum of the steps

X X1 X2 XN

in general have the same distribution p x (up to a scale factor) as the individual steps? As remarked in
Klafter et al. [1996] this is the fundamental question of fractals: When does the whole look like its parts?

??? Abschnitt unverstaendlich !!! Of course, we already know two answers to the above question. As
we just recalled in the introductory remarks p x may be a Gaussian density. And we know already that
p x may be a Cauchy density

1
"

c
c2 x & 2

(recall that we have have demonstrated in Chap. ??, that the sum of two Cauchy variables is again a Cauchy
variable). As Lévy has proved there exist other solutions. The remarkable aspect of these other solutions
is that, as it is the case for the Cauchy density, all involve random variables with infinite variance!

The solutions that Lévy found are called stable (or Lévy) distributions. They play a constantly increas-
ing role as a generalization of the normal distribution. In order to describe stable distributions and look at
some of their properties we follow Feller [1966] and introduce the convenient notation

U
d

V

to indicate that the random variables U and V have the same distribution. Throughout this section X ,
X1, X2, , XN denote mutually independent random variables with a common distribution, say R and
SN X1 XN.

A distribution R is called stable if for each N there exist constants cN 0 and &N such that

SN
d

cNX &N (6.46)

The distribution R is called stable in the strict sense if (6.46) holds with &N 0. The above definition can
also be formulated equivalently in the following form: R is stable if to arbitrary constants c 1, c2 there exist
constants c and & such that

c1X1 c2X2
d

cX &

Let us now look at some basic properties of stable distributions. For a proof of the statements that
follow we refer the reader to Feller [1966]. The most important one is that the norming constants c N in Eq.
(6.46) are of the form

cN N1 +

1Paul Lévy (186–1971)

6.8. LÉVY OR STABLE DISTRIBUTIONS 221

with 0 + 2. The constant + is called the characteristic exponent of the stable distribution R. Sometimes
it is also named the stability index.

An important property is that in practice the centering constants &N may be disregarded. The reason for
this fact is that we are free to center the distribution R in an arbitrary manner, that is, we can replace R x
by R x b . In fact, if R is stable with an exponent + 1 the centering constant b may be chosen so that
R x b is strictly stable. To see why this is so we consider the random variable S MN , which is a sum of M
independent variables each distributed according to c NX &N , i.e.,

SMN

N

i1

cNXi &N (6.47)

So we have

SMN
d

cNSM M&N
d

cNcMX cN&M M&N (6.48)

Since M and N play the same role it follows from (6.47) and (6.48) that

cN N &M cM M &N

For + 1 the above equation does not have a solution, but when + 1 it implies that

&N b cn N

for all N. It follows now from Eq. (6.46) that the sum S N of N variables distibuted as X b satisfies the
condition

SN
d

X

which completes our proof.
Let us consider SM N , i.e. the sum of the independent variables SM and SM N SN , which are dis-

tributed, respectively, as cMX and cNX , i.e., we assume that &n 0. For such a symmetric stable distribution
we have the important relation

cM NX
d

cMX1 cNX2 (6.49)

An important relation follows from Eq. (6.49), namely

s1 +X1 t1 +X2
d

s t 1 +X (6.50)

whenever the ratio s t is rational. Since every stable distribution R is easily shown to be continuous (see
Feller [1966]) Eq. (6.50) holds for all s 0 and t 0. The meaning of the above equation is clear. For the
normal distrbution it simply restates the addition rule for the variances. In general, however, it implies that
all linear combinations a1X1 a2X2 belong to the same type.

The importance of the normal distribution stems from the Central Limit Theorem, which states that
the normal distribution is the only stable distribution with variance! Remarkably similar limits may be
formulated for distributions without variance. Only stable distributions occur as such limits. Consider
for example a stable distribution with + 1. The average X1 XN N has the same distribution as
X1N 1 1 +, and the last factor tends to infinity. In other words the average of N variables is likely to be
larger than any of the components Xk. This is, of course, only possible if the maximal term max X1 XN
grows exceedingly large and receives a dominating influence on the sum S N .

Thus, we are now able to answer the question raised by Lèvy, which we mentioned at the beginning of
the section. If Xi, i 1 N are N independent identically distributed Lèvy random variables, with the
same stability index +, then the renormalized sum

SN
1

N1 +

N

i 1
Xi

222 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

has the same probability density function as the Xi. It is important to remark that the sum scales as N 1 +

and not as N, as it is the case for a diffusive random walk.
Let us conclude by mentioning that we already met two examples of stable distributions, the normal

distribution which corresponds to the case + 2 and the Cauchy distribution, which corresponds to the
case + 1. For the case + 1 2 there is also a stable distribution with density

p x
0 forx 0

exp b2

4x
b2

4"x3

1 2
forx 0

and with norming constants cN N2. This probability density is called the Smirnov density.
In the next section we are going to construct the most general form of all stable distributions, which is

due to Lévy.

6.8.1 The Cauchy Process
Bachelier’s Chain Equation

Let us now consider a Markov process X t and let its space of states be R. As we know the conditional
transition probability T x t x t satisfies the Chapman–Kolmogorov equation. In order to derive a differ-
ential form of the Chapman–Kolmogorov equation to describe Brownian motion we had to assume that the
moments

an an z %t x z nT x t %t z t dx

exist and are convergent.
Let us now look at the so–called Cauchy process. A Cauchy process is defined through the propagator

TC x t %t z t
%t
"

1
x z 2 %t2

It is easy to check that TC satisfies the necessary conditions of a propagator, namely

dxTC x t %t z t 1

and

lim
%t 0

TC x t %t z t - x z

The Cauchy process satisfies the Chapman–Kolmogorov equation and is therefore a Markov process. How-
ever, the moments an do not exist for the Cauchy process and hence it is not possible to derive a differential
form of the Chapman–Kolmogorov equation, i.e., there is no master equation describing the dynamics of
the Cauchy process.

The Realizations of the Cauchy Process

In order to generate trajectories of the Cauchy process we first have to be able to generate Cauchy dis-
tributed random numbers. We have already seen in Chapter 2 that Cauchy distributed random numbers
can be generated as the ratio of two gaussian distributed random numbers. Here we prefer to use a more
efficient method which is based upon the inversion generating method (see the excercises for a comparison
of the numerical performance of the two methods).

We recall that the inversion generating method is based upon the following idea. Let X be a real
random variable with density function P x and distribution function F x . Then, if r is a unit uniform
random number, the random number x obtained by solving the equation

F x r

6.8. LÉVY OR STABLE DISTRIBUTIONS 223

i.e., the number

x F 1 r

is a sample value of X . The Cauchy random variable C m a , defined by the density function

P x
1
"

a
x m 2 a2

where a, m are real numbers satisfying 0 a . and . m .. The variable X which is Cauchy
distributed around m with half–width a has the distribution function

F x
x

.

dx
a "

x m 2 a2

1
"

arctan
x m

a
"
2

Setting this equal to a unit interval uniform random number r and solving for x we obtain the generating
formula

x m a tan r
1
2
"

We are now in the position to generate numerically some realizations of the Cauchy process. As it was the
case for the Wiener and the Ornstein–Uhlenbeck process we will construct an algorithm, which is exact.
Again the method is based on the fact that we have an analytical expression for the conditional transition
probability TC x t %t z t , which is itself a Cauchy density C z %t . Since the cauchy density satisfies the
Chapman–Kolmogorov equation, paralling the construction of an exact algorithm for the Wiener process,
we may use the fact that the increments of the Cauchy process

%Ci C ti C ti 1

are statistically independent and distributed according to a Cauchy density

P %C %t
%t
"

1
%x 2 %t2

Obviously, the exact algorithm is straightforward and reads:
(i) Let C t be given.
(ii) Draw a Cauchy distributed random number %C around 0 with half–width %t.
(iii) Advance the stochastic process according to

C t %t C t %C t

(iv) Goto (i) until the desired final time is reached.
The above algorithm has been implemented in the listing CauchyProcess.java, which can be

seen below.

import j ava . a p p l e t . Apple t ;
import j ava . awt . ;
import j ava . awt . even t . ;
import p t p l o t . ;

5
publ i c c l a s s CauchyProcess extends P l o t A p p l e t

p r i v a t e s t a t i c in t width =500, h e i g h t =400;

224 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

10 p r i v a t e double dt = 0 . 0 1 ; / / t ime i n c r e m e n t for sav ing
p r i v a t e double t e n d =100 . ;

/ / p r i v a t e i n t s t e p s =100;
publ i c double [] C simu ; / / t he array for sav ing the r e a l i z a t i o n

15 / The main r o u t i n e for runn ing the program as an a p p l i c a t i o n /
publ i c s t a t i c void main (S t r i n g [] a rgs)

Apple t a p p l e t = new CauchyProcess () ;
Frame frame = new Frame ("Cauchy Process") ;
frame . addWindowLis tener (new WindowAdapter () / / Handle window c l o s e r e q u e s t s

20 publ i c void windowClosing (WindowEvent e) System . e x i t (0) ; / / e x i t ? !
) ;

frame . s e t S i z e (width , h e i g h t) ; / / s e t s i z e of window
frame . add ("Center" , a p p l e t) ; / / add a p p l e t to the window
frame . show () ; / / d i s p l a y window on screen

25 a p p l e t . i n i t () ; / / s t a r t a p p l e t

/ The a c t u a l main program , s t a r t e d by a browser or by the main method
C a l c u l a t e a r a d i o a c t i v e decay and p l o t the r e s u l t i n g p o i n t s us ing

30 t he PTPlot c l a s s e s . Compare wi th the e x a c t r e s u l t . /
publ i c void i n i t ()

in t s t e p s =(in t) (t e n d / dt) + 1 ;
C simu =new double [s t e p s] ;
C simu [0] = 0 . 0 ;

35
/ / Advance : t ime s t e p s
for (in t t = 0 ; t t e n d ; t ++)

C simu [t + 1] = C simu [t] + dt Math . t an ((Math . random () 0 .5) Math . PI) ;
/ / Genera t in of the i n c r e m e n t accord ing to the Cauchy d i s t r i b u t i o n

40 / / The Cauchy rando numbers are g e n e r a t e d by the i n v e r s i o n method

/ / s t a r t anew p l o t and p l o t the p o i n t s
super . newPlot () ;

45 super . i n i t () ;
in t t max =(in t) t e n d ;
p l o t () . s e t T i t l e ("Realization of the Cauchy Process") ; / / T i t l e o f p l o t
p l o t () . s e t M a r k s S t y l e ("none") ; / / do t s , p o i n t s or v a r i o u s
p l o t () . s e tXLabe l ("time t") ; / / s e t the l a b e l s of the axes

50 p l o t () . s e tYLabe l ("x") ;
p l o t () . setXRange (0 , t max) ; / / s e t the x range
p l o t () . s e t G r i d (true) ; / / Grid or not ?
p l o t () . setYLog (f a l s e) ; / / l o g a r i t h m i s p l o t ?
p l o t () . s e t B a r s (f a l s e) ; / / shou ld I use bars ?

55 / / / Create the t i c k s for the a x i s
for (i n t i =0; i =t max ; i +=50)

p l o t () . addXTick (I n t e g e r . t o S t r i n g (i) , i) ;

f o r (i n t i =0; i =N 0 ; i +=100)
60 p l o t () . addYTick (I n t e g e r . t o S t r i n g (i) , i) ;

/
/ / p l o t the p o i n t s and connec t them
boolean connec t = f a l s e ;
for (in t t = 0 ; t t e n d ; t ++)

65 p l o t () . addPo in t (0 , t , C simu [t] , connec t) ;
i f (connec t == f a l s e) connec t = true ;

6.8. LÉVY OR STABLE DISTRIBUTIONS 225

?????? In lines xx–yy we have coded the generation of the Cauchy distributed random variables ac-
cording to the algorithm based on the inversion method. In line xx we advance the stochastic process. The
realization is then plotted in lines xx to yy, with the help of the Ptplot routines we already know.

2x10

!0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

!0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Realization of the Cauchy Process

time t

x

2x10

!0,42
!0,40

!0,38

!0,36

!0,34

!0,32

!0,30

!0,28

!0,26

!0,24

!0,22

!0,20

!0,18

!0,16

!0,14

!0,12

!0,10

!0,08

!0,06

!0,04

!0,02

0,00

0,02

!0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Realization of the Cauchy Process

time t

x

Figure 6.15: Two possible realizations of the Cauchy process.

The illustration of the sample paths of the Cauchy process seen in Fig. (6.15) clearly indicates that the
sample paths are discontinuous. Formally, this can be demonstrated by checking that the limit

lim
%t 0

1
%t

x z 0

dxT x t %t z t 0

for any (0. For continous Markov processes the above limit can be shown to be zero with probability 1.

6.8.2 Lévy Processes
We have just seen that there exist Markov processes which can not be described by a master equation. Such
processes are generally called Lévy processes. We now want to characterize them in general Montroll und
West [1979].

To this end we consider a Markov process X t in the phase space R and assume that it is homogeneous
in time and space. In other words, we assume that the propagator satisfies the following condition

T x t x t P x x t t

Hence the Chapman–Kolmogorov equation can be written as

P x2 x1 t dyP x2 y t1 P y x1 t t1 (6.51)

226 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

It turns out that the characterization of Lèvy process is best accomplished in Fourier space. To this end we
now look at the characteristic function

G k t
.

.

dxexp ikx P x t

From the Chapman–Kolmogorov equation (6.51) we can now derive a functional equation for the charac-
teristic function

G k t G k t t1 G k t1 (6.52)

The characterization of Markov processes which are homogeneous in space and time is based upon the
characterization of the solutions of the above functional equation. To this end we must find those solutions
of (6.52) whose Fourier transformation is non–negative and normalized.

We already know two characteristic function satisfying Eq. (6.52), namely

G k t exp Dk2t

which is the characteristic functionof the Wiener process, and

G k t exp a k t

which is the characteristic function of the Cauchy process. The general solutions of Eq. (6.52) where
invetigated by P. Lévy. He found the Fourier transform of all strictly stable distributions which now bear
his name. It is evident that the characteristic functions

G k t exp b k +t

for 0 + 2 and b 0 are solutions of Eq. (6.52). However we have to check that the corresponding
P x t are probability densities. Formally we have

P x t
1

2"
dk exp b k +t ikx (6.53)

P x t is normalized because

dxP x t
1

2"
dx dk exp b k +t ikx

dk- k exp b k +t

1

Futhermore, it follows immediately from the formal expression (6.53) that

P x 0 - x

In fact it can also be shown that the characteristic function defined in Eq. (6.52) leads to a positive density
P x t for 0 + 2. This has been demonstrated by Bochner. The proof is trivial for 0 + 1 but rather
involved for the case 1 + 2. So that we refer the interested reader to the original literature for the latter
case.

For the case 0 + 1 the proof is as follows:

P x t
1

2"
dk exp b k +t ikx

1
"

.

0

dk cos kx exp b k +t

tb+
"x

.

0

dkk+ 1 exp bk+t sin kx

6.8. LÉVY OR STABLE DISTRIBUTIONS 227

By defining

g k k+ 1 exp bk+t

we can write

P x t
tb+
"x

.

0

dkg k sin kx

tb+
"x

.

n 0

2 n 1 " x

2n" x

g k sin kx

tb+
"x2

.

n 0

2"

0

dug
u 2n"

x
sin u

For 0 + 1 the function g is monotonically decreasing. For each value of sin u in the u–interval
0 " there is a corresponding negative value of sin u in the u–interval " 2" . Since g is monotonically

decreasing the positive contributions dominate over the negative ones. So we can conclude that P x t 0
for t 0 and x 0. The case t 0 and the case x 0 are trivially satisfied.

The explicit calculation of the probability density P x t is only possible for the special cases + 1
(the Cauchy process), + 2 (the Wiener process) and for the case + 1 2 (the Smirnov density). These
are exactly the densities we have considered as examples of stable distributions!

Let us conclude this section by remarking that the characteristic function G k may also be generalized
by adding an imaginary part bc

G k t exp tb k + 1 icsign k

The factor sign k is introduced, in order to satisfy the necessary condition for characteristic functions

G k t G k t

which guarantees that the probability density is real.
The requirement that the Fourier transform G k t be a non–negative density function puts certain limit

on c, which have been studied by Khintchine and Lèvy. Their results are: In order that a normalized,
non–negative distribution function P x yt satisfy the Chapman-Kolmogorov equation it is necessary and
sufficient that its characteristic function be represented by the formula (for t 0)

log G k t vkt bt k + 1 ic0 k + signk iµk

where +, c, v, b are constants. v is any real number, 1 c 1, 0 + 2, b 0 and

0 k +
tan "+ 2 if + 1
2 " log k if + 1

Lèvy disributions with vanishing skewness parameter are called symmetric distributions. In the following
we shall consider only symmetric distributions and we will denote them by S + ' µ , where ' denotes the
scale parameter and µ the shift.

Let us conclude this section with two remarks. Lèvy distributions have in addition to their stability
under convolutions two other interesting properties. Except for the gaussian (+ 2) all +–stable probability
density functions have power–law tails with exponents 1 +. In other words, for large arguments (x 1)
the asymptotic approximations of a Lèvy stable distribution of index + is given by

P+ x
CLS +

x 1 +

228 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

which evidently leads to an infinite variance and heavy tails. Thus stable distributions are characterized by
a powert–law behavior on the far wings of the distribution. The index + does not only control the wings of
the distribution, it also affects the value of the distzribution at the origin

P+ 0
6 1 +
"+

t& 1!!!

The stability under convolution gives rise also to another interesting property of Lèvy distributions: the
scale invariance of the process. If appropriately rescaled, the increment at scale N, will have the same
distribution as the increment at scale ,

PN, x
1
$

P, x $; $ N1 +

In other words the process x t is self–similar witha self–similarity exponent which is the inverse of the
stability index +. This self–similarity structure of the Lèvy distribution is at the basis of many interesting
applications.

Several other interesting properties of the Lèvy distributions can be found in the literature Montroll und
Bendler [1984]; Bouchaud und Georges [1990].

6.8.3 The Numerical Generation of Levy Distributed Random Variables
In general the generation of stable random variables is quite an involved business. We will start our dis-
cussion by presenting an algorithm which allows the generation of random numbers distributed accord-
ing to S+ 1 0 . The algorithm requires one random number, say &, uniformly distributed on the interval
(" 2 " 2) and of an exponentially distributed random number W with mean 1. & and W are assumed to
be independent. The random number

x
sin +&

cos & 1 +

cos 1 + &
W

1 + 2
(6.54)

is distributed according to S+ 1 0 . It is easy to check that for the special case + 1 Eq. (6.54) reduces to

x tan &

whose distribution is Cauchy. In the case + 2 Eq. (6.54) reduces to

W 1 2 sin 2& cos & 2W 1 2 sin &

which corresponds to the Box-Muller method for the generation of N 0 2 random variables. The proof
that Eq. (6.54) indeed generates S+ 1 0 random variables can be found in [Samorodnitsky und Taqqu,
1994].

Knowing how to generate S+ 1 0 distributed symmetric random variables it is clear that

'x µ S+ ' µ

[Mantegna, 1994]

6.9 Fractal Space Processes
Shlesinger [1996] Hughes [1995]

6.9.1 Levy Flights
As a first example of a random walk which does not belong to the class of Brownian motion, we consider a
random walk process for which the variance of the jump length is infinite. The absence of a finite variance
implies the absence of a characteristic length scale for the process. This makes such Lèvy random walks,
which are also called Lèvy flights, scale invariant fractals. A particular illustrative and pedagogical examle
is the one–dimensional Weiertstrass random walk.

6.9. FRACTAL SPACE PROCESSES 229

The Weierstrass Random Walk

The Weierstrass random walk is a discrete space one–dimensional Lèvy flight. It represents a very simple
model for a random process which generates self–similar clusters.

The Weierstrass random walk is generated by the transition probability density function p r for jumps
of length r

p r
a 1

2a

.

m 0
a m - r %bm - r %bm (6.55)

with a 1, b is an integer (b 1). The random walk taes place on a lattice with spacing %. In the following
we will set for convenience this length scale equal to one. The above transition probability density allows
jumps of length 1, b, b2, b3, . Howvever, when the length of the jump increases by an order of magnitude
in base b the probability for the occurrence of such a jump decreases by a factor a. Typically, we get a
cluster of jumps of length 1 before a jump of length b occurs. About a such clusters separated by lengths
of order b are found before one sees a jump of order b 2, and so on. In this scheme a step of length bm is
a times more likely then a step of length bm 1. In other words, we expect to see a clusters of size bm per
cluster of size bm 1.

Let us check that the variance of this random walk is indeed infinite. To this end we calculate the
mean–square displacement per step. This quantity is given by

x2
.

r .

r2 p r
a 1

a

.

m 0

a
b2

m

Thus, the mean–square displacement is infinite if b2 a 1. In the following we will assume that this
condition is satisfied (For b2 a 1 the variance x2 is finite and the random walk is described by a
Gaussian diffusion process).

In order to investigate the qualitative behaviour of the Weiertstrass random walk we look at the charac-
teristic function of the process

G k
.

r .

exp irk p r

and we find

G k
a 1

a

.

m 0
a m cos bmk

We recognize that G k is given by the famous Weierstrass function, which is everywhere continuous, but
nowhere differentiable, when b a. In figure 6.16 we plot M

m 0 a m cos bmk for M 0 (bottom), 1, 2,
3, 4 (top) with a 2 and b 3. As is seen the adding higher order terms, the sum of the series fluctuates
more wildly on smaller length scales.

It may be of interest prior to simulating the Weierstrass random walk to investigate the continuum limit
of the Weierstrass random walk. to this end we must look at the small k–behaviour of the characteristic
function. The characteristic function satsfies the following functional equation

G K a 1G bk
a 1

a
cos k (6.56)

which can be obtained by separating off the m 0 term and reindexing the terms in the remaining series.
it is easy to verify that if b2m a 1 the solution of the above functional equation for any positive integer

m reads

Gh k
a 1

a

.

m 0

1 m

2m !
k2m

1 b2m a

230 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

!10

!8

!6

!4

!2

0

2

4

6

8

10

!0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2

The Weierstrass Function

k

G
(
k
)

Figure 6.16: The Weierstrass function G k for M=0,1,2,3,4,5 in different colors. The parameters are a 2 b 3.

6.9. FRACTAL SPACE PROCESSES 231

Gh k is holomorphic in the neighbourhood of k 0. The general solution of the functional equation (6.56)
reads Hughes [1995]

G k Gh k Gs k

where Gs k satisfies the homogeneous equation

Gs k a 1Gs bk

Since the moments of the transition probability function are not all finite, the function G k must be singular
at k 0. This singularity must reside in Gs k , the singular part of the characteristic function. To this end
we focus on the homogeneous part of the functional equation. The solutions to this special equation have
the form

Gs k const k µ

where the exponent is given by

µ
lna
lnb

When µ 2 the small k–behaviour (large r) of g k involves the exponent µ, while for µ 2 the moments
x2 is finite and a Taylor expansion of G k does exist. Summarizing it can be shown that

Gh k 1 const k µ O k2 exp k µ for µ 2
1 1

2 r2 k2 exp k 2 for µ 2 (6.57)

The characteristic function may now be used to calculate Pn s , the probabiity that the walker arrives at s
after the n–th step.

The probability Pn s satisfies the following obvious recurrence formula, which is characteristic for all
dicrete time random walks,

Pn 1 s
s

p s s Pn s (6.58)

It is easy to check that the necessary condition

s
Pn s 1

is satisfied. In the above sum the summation extends over all lattice points. It follows from Eq. (6.58) in
the limit of lattice spacing % (which is now nolonger assumed to be unity) and the time step , going to zero

lim
% , 0

1
,

Pn 1 s Pn s
3
3t

P x t

and

lim
% , 0

s

p s s -s s Pn s
.

.

dx P x t lim
% , 0

p x x - x x

Introducing

P k t
.

.

dyP y t exp iky

the equation of motion reads

3
3t

P k t lim
% , 0

G k 1
,

P k t

232 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

Hughes [1995] have demonstraed that for * 2 the joint limits

a 1 +% O %

b 1 *% O %

and

lim
% , 0

%µ

,
D const 0 + 2*

yield

3
3t

P k t D k + *P k t (6.59)

The solution of the above equation is clearly a Lèvy characteristic function

P k t exp D k µ 0 µ 2

Let us finally remark that the inverse Fourier transform of Eq. (6.59) yields the following integrodifferential
equation

3
3t

P x t
D
"

sin "µ 2 6 µ 1
.

.

dy
P y t

x y µ 1

as the evolution equation for the probability densiyt of a Lèvy process. Remarkably, the Lèvy process
appears to be nonlocal in the state space of the system and therefore no finite number of derivatives can be
used to represent the kernel in the above equation. In fact the same equation can be associated to so–called
fractional derivatives Zaslavski [1994]. Their consideration however is beyond the scope of the present
book.

Lèvy flights are realised in several physical systems. Th applications arise in different contexts ranging
from the diffusion in micelles, to laser cooling. Last not least Lèvy statistics finds application in finance.
For a recent survey of the applications of Lèvy statistics to physical systems see Ref. Shlesinger et al.
[1995]. This refernce contains also an article by Mandelbrot on Lévy.

6.10 The Continuous Time Random Walk
???????? Hier fehlt ein ganzes Stueck!!!!!!!!!

6.10.1 Lévy Walks
Because of the infinite moments Lévy flights have been ignored in the physical literature. It has been shown
however that rather than focusing on this characteristic feature of Levy flights one should concentrate on
their scaling properties. The divergence of the moments can be tamed by associating a velocity to each
Lévy flight trajectory segment. The reasonable question one has to pose is then: How far has a Lévy
walker wandered from its starting point in time t? The answer to this question is a well–behaved time
dependent moment of the corresponding probability density. In fact, as we will see shortly, a Lèvy random
walker moving with a velocity v, but with an infinite mean displacemet per jump can have a mean square
displacement from the orogin that varies as v2t2. To see this we make use of the continuous time random
walk formalism.

Let 7 r t be the probability density to make a jump of displacement r in a time t. We write

7 r t 8 t r p r p r t 8 t

6.11. EXERCISES 233

where p r is the probability desnity of a single jump and 8 t has the same meaning as before and 8 r t
and p r t are conditional probabilities for a jump taking a time t given it is of distance r and respectively
for a jump being of distance r given it took at time t. For simplicity we assume

8 r t - t
r

v r

which ensures that r vt. It is important to remark, that random walks with explicit velocities visit all
points of the jump on the path between 0 and r. Such random walks are called Lévy walks in order
distinguish them from the Lévy flights, which visit only the end points of the jump. Note that the velocitiy
need not be constant, it may as weel be a function of r.

In 1926 Richardson formulated the law of turbulent diffusion which bears his name. The mean square
separation r between two particles in a turbulent flow grows like t 3. This is of course in contrast with
the canonical result r2 t Dt which we know from the theory of Brownian motion. In the study of
turbulent diffusion Kolmogorov assumed a scaling behaviour implying

v r r1 3

If we furthermore assume

p r r 1 *

which for small enough * produces a Lévy flight with r 2 ., we find

r2 t
t3 for * 1 3
t2 3 1 * 2 for 1 3 * 5 3
t for * 5 3

Thus we see that for * 1 3 Richardson’s law may of turbulent diffusion may be reproduced. It corre-
sponds to Lévy walk with Kolmogorov scaling for v r combined with such a * that the mean time spent
by a segment of the trajectory is infinite.

The Lévy walk approach to turbulent diffusion provides a method for simulating trajectories of turbulent
particles.

6.11 Exercises
EXERCISE 6.1 Linear one-step process - quantized harmonic oscillator in a radiation field [Kampen,
1992, page 143]
Let n 0 1 2 numerate the state of a quantized harmonic oscillator with energy h) n 1 2 Tran-
sitions between the states are induced by the interaction of the oscillator with the radiation field. The
transition probability is given by the dipole moments. The only allowed transitions according to the dipole
moments are from n to n 1 and from n to n 1 (see quantum mechanics lecture).

Therefore the transition rates (probabilities per unit time) are:

g n 1 *n for the transition n 1 n and

r n +n for the transition n n 1

+ and * are two constants, which depend only on the radiation density at the frequency) and not on n
Finally the Master equation for this special one-step process reads

3
3t

P n t +nP n 1 t * n 1 P n 1 t +n * n 1 P n t

Write a program to simulate the given Master-equation for the one-step process using the numerical
scheme, learned in the lecture. Choose the parameters + and *. The result should be a plot of P n t for
different n. Plot also P n at large t, which gives the distribution of the harmonic oscillators with n (and
therefore the energy) in the steady state.

The exact stationary solution of the Master-equation is PS n const *
+

n

234 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

EXERCISE 6.2 Non-linear one-step process - growth of a competitive population [Kampen, 1992, page
163]
The number of individuals of some species is called n The death rate for this population is + and the birth
rate (e.g. by fission) is * + and * are fixed and independent of the age, otherwise it would not be a Markov
process. Both rates are per unit time.

This would be still a linear one-step process. So consider an additional rate: the competition rate
between the individuals of the population. This rate is an additional death rate and is & n 1

Therefore the transition rates (probabilities per unit time) are:

g n *n for the transition n n 1

r n +n &n n 1 for the transition n n 1

+, * and & are constants, which do not depend on n
Finally the Master equation for this one-step process reads

3
3t

P n t +n &n n 1 P n 1 t *nP n 1 t +n *n &n n 1 P n t

Write again a program to simulate the Master equation and again choose suitable parameters + * &
View the time dependence of the population n and try to find out the behaviour of the stationary solutions.

The equation for the first moment (so called macroscopic equation) is called the Malthus-Verhulst
equation and reads

ṅ * + n & n 2

If you neglect the nonlinear term on the right hand side, you get Malthus law. Then the solution is just an
exponential growth of the population.

The solutions to the nonlinear equation can be calculated and you get

n
* +
&

and n 0

where the first one is the stable solution (a so called attractor) and the second one is unstable.
example parameters: + 0 5 * 1 & 0 05

EXERCISE 6.3 The Random Telegraph Process [Gardiner, 1990, page 77]
The Random-Telegraph process is the most simple Markov-process possible. It is a discrete process, which
has only two possible states, called n 0 and n 1. The master-equation reads

3
3t

P 0 t n bP 1 t n aP 0 t n (6.60)

3
3t

P 1 t n aP 0 t n bP 1 t n (6.61)

(6.62)

a and b are the transition rates from state 0 1 and 1 0. Examples of this equation are processes, which
jump from one state to the other and back (e.g. spin flipping).

We can rewrite the two above equations into one equation, resulting in the familiar master-equation -
DO IT. (you have to ????) Then write a program to simulate the master-equation. Use n 1 as the initial
condition. For the long time behavior - the stationary solution - the initial condition is not significant. Try
different settings for the parameters a and b.

Compare the results of the simulation with the exact analytical results. For t . the stationary solution
for the first moment is:

P 0
b

a b
P 1

a
a b

and

n
1

n 0
nP n P 1

a
a b

6.11. EXERCISES 235

And for the stationary covariance (for the second moment set t t) we get t t

n t n t
a

a b

2 ab
a b 2 e a b t t

Comment: This is an example of an ergodic process (a process with identical ensemble mean and time
mean), where you can explicitly prove the ergodicity. Because if the correlation time is finite, the system is
ergodic. And in this case the correlation time is

tC :
1

var n 0

.

0

dt var n t
1

a b

and therefore finite.

EXERCISE 6.4 Monomolecular Chemical Reaction A X [Schnakenberg, 1995, page 183]
A further example of a discrete one-step process is a chemical reaction, where an atom can be either bound
to a molecule (call it state X) or be by itself (call it state A). We assume that we have an A-reservoir, so that
there are always enough atoms to become absorbed by a molecule. The number of molecules (state X) is
called N, the number of atoms A Another example of this situation would be an atom in the ground state at
a given temperature. The atom jumps to a higher state and back, depending on the temperature; assuming
low temperatures (A-reservoir).

For chemical reactions the transition rates are given by the rate-constant k, depending on the tempera-
ture. The derivation is based on the Stozahlansatz. So the transition of atoms to molecules is proportional
to the number of atoms in the reservoir A and the transition of molecules releasing an atom is proportional
to the number of molecules N

WN 1 N A and WN 1 N kN

Then the master-equation is

3
3t

P N t AP N 1 t k N 1 P N 1 t A kN P N t

Again write a program to simulate the master-equation. Use k 1 A 100 for the parameters and
N 0 A as initial value. Then compare the simulation results with the analytical results:

N t A N 0 A e t A for t .

Pstat N
AN

N!
e kA Poisson-distribution

Also try different parameters and initial conditions.
Comment: In this example we assumed that there is enough time for the reactants to diffuse in the

volume. That means the diffusion of atoms and molecules is very fast compared to the time a reaction takes
place. If the two time scales are almost the same, we also have to simulate the diffusion. Such systems are
known as reaction-diffusion systems - we will discuss them later on.

EXERCISE 6.5

236 CHAPTER 6. MARKOV PROCESSES AND MASTER EQUATIONS

Bibliography

Arnold, V. I. Mathematical Methods of Classical Mechanics. Springer–verlag, New York, 1978.

Bouchaud, J. P. und Georges, A. Phys. Rep., 195:128, 1990.

Davies, M.H.A. Markov Models and Optimization. Chapman & Hall, London, 1993.

Feller, William. An introduction to probability theory and its applications. John Wiley & Sons, New York,
1950.

Feller, William. An Introduction to Probability Theory and Its Applications, Band II. John Wiley & Sons,
1966.

Gardiner, C.W. Handbook of Stochastic Methods. Springer Verlag, Berlin, zweite Auflage, 1990.

Gillespie, Daniel T. Markov Processes, An introduction for physical scientists. Academic Press, inc., 1992.

Gillespie, Daniel T. The mathematics of Brownian motion and Johnson noise. Am. J. Phys., 64(3):225–240,
1996.

Hughes, Barry D. Random Walks and Random Environments, Volume 1: Random Walks. Clarendon Press,
1995.

van Kampen, N. G. Stochastic Processes in Physics and Chemistry. North–Holland, Amsterdam, zweite
Auflage, 1992.

Kampen, N.G. Van. Stochastic Processes in Physics and Chemistry. Elsevier Science Publishers B.V.,
Amsterdam, zweite Auflage, 1992.

Klafter, Joseph, Shlesinger, Michael F. und Zumofen, Gert. Beyond Brownian Motion. Physics Today,
Seiten 33–39, 1996.

Mantegna, Rosario Nunzio. Fast accurate algorithm for numerical simulation of Lévy stable processes.
Phys. Rev. E, 49:4677–4683, 1994.

Montroll, E. W. und Bendler, J. T. J. Stat. Phys., 34:129, 1984.

Montroll, E. W. und West, B. J. On an enriched colection of stochastic processes. In E. W. Montroll
und J. L. Lebowitz, Herausgeber, Fluctuation Phenomena, Kapitel 2, Seiten 61–206. North–Holland,
Amsterdam, 1979.

Nordsieck, A., Lamb, W.E. und Uhlenbeck, G.E. On the theory of cosmic–ray showers. I. The Furry model
and the fluctuation problem. Physica, 7(4):344, 1940.

Reichl, L. E. A Modern Course in Statistical Mechanics. Edward Arnold, Great Britain, 1980.

Risken, H. The Fokker–Planck Equation. Springer–Verlag, Berlin, zweite Auflage, 1989.

Samorodnitsky, Gennady und Taqqu, Murad S. Stable Non–Gaussian Random Processes, Stochastic Mod-
els with Infinte Variance. Chapman & Hall, New York, London, 1994.

237

238 BIBLIOGRAPHY

Schnakenberg, Jürgen. Algorithmen in der Quantentheorie und Statistischen Physik. Zimmermann-
Neufang, Ulmen, 1995.

Shlesinger, Michael F. Random Processes. In XXXXXX und YYYYYYYY, Herausgeber, Encyclopedia
of Applied Physics, Band 16, Seiten 45–70. VCH Publishers, 1996.

Shlesinger, Michael F., Zaslavsky, George M. und Frisch, Uriel, Herausgeber. L évy Flights and Related
Topics in Physics, Band 450 von Lecture Notes in Physics. Springer, Berlin, 1995.

Zaslavski, G. M. Physica D, 76:110, 1994.

Chapter 7

Stochastic Differential Equations

In the previous section we have derived an exact simulation algorithm for the generation of trajectories of
the Ornstein–Uhlenbeck process. The “exact” update formula was

X t %t X t exp q%t
D
2q

1 exp 2q%t
1 2

5 t

where we have now written 5 t to stress the fact that at each time step t we have to draw another Gaussian
distributed random number. The update formula is exact in the sense that it holds for arbitrary values of %t.

However, it will turn out to be convenient to have an update formula which works for small values of
%t. To this end we expand the exact update formula to first order in %t and obtain

X t %t X t 1 q%t
D
2q

2q%t
1 2

5 t

X t qX t %t D %t5 t (7.1)

In the limit %t 0 this approximate update formula turns exact. We recognize immediately that the
stochastic increment in this discretized version of the Ornstein–Uhlenbeck process scales with the square
root of the time increment %t.

Note that in deriving the above discretized update formula we have intentionally omitted the terms
linear in %t stemming from the expansion of the factor in front of the stochastic term. In doing so we have
achieved that the update formula has an important property. Namely, it is selfconsistent in the following
sense (Gillespie [1992]). Let us apply the above formula twice, starting from,

X t 2%t X t %t qX t %t %t D %t5 t %t

Inserting (7.1) we immediately obtain keeping terms up to first order in %t

X t 2%t X t qX t 2%t D %t 5 t 5 t %t

Since 5 t and 5 t % are statistically independent Gaussian stochastic processes we have

5 t 5 t %t N 0 1 N 0 1 N 0 2 2N 0 1

so that we finally have

X t 2%t X t qX t 2%t D 2%t5 t

This selfconsistency of the discretized stochastic differential equation expresses essentially the fundamental
properties of the propagator of a Markov process as they are defined in the Chapman–Kolmogorovequation.

Due to the presence of a stochastic term, the Gaussain stochastic process 5 t , the above equation is
a discretized version of a so–called stochastic differential equation (SDE). It is the aim of this section to

239

240 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

introduce into some peculiarities of stochastic differential equations. In particular we will also show the
equivalence of stochastic processes defined in terms of stochastic differential equations and in terms of
Fokker–Planck equations.

The above expression is a special case of the standard form of a stochastic differential equation (some
times stochastic differential equations are also called Langevin equations):

X t dt X t A X t t dt D X t t 5 t dt1 2 (7.2)

where we have replaced %t by dt to stress the infinitesimal character of the above equation. The term
proportional to dt is called the drift term, whereas the term proportional to dt is called the diffusion term.

The above definition of the stochastic process X t in terms of a stochastic differential equation cleary
shows that the stochastic process X t is continuous, but, in general, not differentiable. This can be seen
by writing Eq. (7.2) as

X t dt X t
dt

A X t t
D X t t 5 t

dt

Obviously, the limit dt 0 of the above equation does not exist, unless D 0. Thus, a purely stochastic
Markov process is everywhere continuous but nowhere differentiable. Nevertheless it is customary in the
physical literature to “pretend” (Gillespie [1992]) that dx dt exists even for non vanishing D. In fact we
know that we can write (see section 6.7.1)

5 t
dt

1
dt

N 0 1 N 0 1 dt

So, we may define a Gaussian white noise process as

9 t lim
dt 0

N 0 1 dt

With the help of the above definition, we can now formally write (compare with 7)

d
dt

X t A X t t D X t t 9 t

This equation is called the white noise form of the Langevin equation. The white noise process introduced
above does have the following averaged properties:

9 t 0
9 t 9 t - t t

which satisfy the requirement of no correlation at different times. Note, that the white noise process 9 has
infinite variance. Accordingly, the spectral density, i.e., the Fourier transform of the correlation function of
9 is constant. This is the reason for calling 9 a white noise process.

It is important to establish precisely the relationship between the white noise process and the Wiener
process (Gillespie [1992]). We know already that the special Wiener process dW dt is a normal random
variable with mean zero and variance dt

dW dt N 0 dt

It follows from the theorems of Gaussian probability densities that

N 0 dt dtN 0 1 dt

Because of the definition of the Gaussian white noise process we can conclude that

dt9 t dW dt

7.1. THE LANGEVIN EQUATION AND BROWNIAN MOTION 241

and hence we have formally in the limit dt 0

dW
dt

9 t

This equation asserts that the derivative of the Wiener process is the white noise process. However, we
know already that the Wiener process is not differentiable so that the white noise process must be ill–
defined. We will see shortly how these formal difficulties may easily be circumvented in the proper defini-
tion of stochastic differential equations. Before doing so we will consider for a moment the most classical
Langevin equation of statistical physics, namely the one describing Brownian motion.

7.1 The Langevin Equation and Brownian Motion
In 1908 Langevin considered the problem of the dynamical description of Brownian motion (van Kampen
[1992]). He suggested that the equation of motion of a Brownian particle with mass m 1 be described by
the following differential equation for the velocity V

d
dt

V &V L t (7.3)

where the terms on the right hand–side of the above equation model the forces which the surrounding
molecules excerpt on the Brownian particle. Since these forces are unknown in detail the following as-
sumptions were postulated. The Brownian particle moving in the fluid of surrounding particles feels a
dissipative drag force which is proportional to its velocity, & being the friction coefficient. Furthermore, the
Brownian particle hits the surrounding particles. These collisions cause irregular changes in the velocity
of the Brownian particle. Thus, the external force L t is modeled as a zero mean, temporally uncorrelated
randomly fluctuating force. The first two moments of the stochastic process L t are assumed to have the
following properties

L t 0
L t L t 6- t t

The Langevin equation is the prototype of a stochastic differential equation, i.e. of a differential equa-
tion whose coefficients are random functions of the time with some given statistical properties. It is clear
that choosing L t 69 t , where 9 t is a Gaussian white noise process, the Langevin equation of
Brownian motion describes an Ornstein–Uhlenbeck process. The stochastic process V t is completely
defined once an initial condition V 0 V0 is specified. Its formal solution reads

V t V0 exp &t exp &t
t

0

dt exp &t L t

Taking the average over an ensemble of Brownian particles all having the same initial condition we find for
the mean value of the velocity

V t V0 exp &t

where we made use of the statistical properties of the Langevin force L t . Accordingly, the second moment
of the velocity field is found to be

V 2 t V 2
0 exp 2&t exp 2&t

t

0

dt
t

0

dt exp & t t L t L t

V 2
0 exp 2&t

6
2&

1 exp 2&t

242 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

Up to now the constant 6 was left unspecified. From equilibrium statistical physics (theorem of equiparti-
tion of energy) we expect that for long times

V 2 t . kT

Hence we have

6 2&kT (7.4)

and we have established a relation between the attrition coefficient & and the random fluctuations. Eq. (7.4)
is a simple version of the so–called fluctuation–dissipation theorem.

7.2 Stochastic Integration
It is the aim of this section to show how the formal problems arising in the formulation of Langevin
equations can be avoided. Let us begin by formulating the Langevin equation in a discrete way,

dX t a X t t dt b X t t 9 t dt

where a X t t is a deterministic drift and b X t t is the diffusion term, 9 t being a Gaussian white
noise process. We proceed by integrating the above equation from t 0 to t and obtain for each sample path

X t X t0

t

t0

dsa X s s
t

t0

b x s s 9 s ds

Since the Wiener process W t can be represented as the integral over a white noise process, i.e.,

W t
t

t0

ds9 s (7.5)

the integral form of the Langevin equation can be written as

X t X t0

t

t0

dsa X s s
t

t0

b x s s dW s (7.6)

The above expression is expected to make sense because the Wiener process is continuous. We will see
shortly that the above equation does have a precise meaning. In fact from here on a solution of a stochastic
differential equation will be interpreted as a solution of the corresponding integral equation, which will be
written in the short–hand notation

dX t a X t t dt b x t t dW t

Of course, the second integral in Eq. (7.6) is not an ordinary integral. It is an integral with respect to
the Wiener process W t . Such integrals are called stochastic integrals and we will define and discuss them
now. For a precise mathematical definition of stochastic integrals see Gard [1988]; Potter [1990]; Kloeden
und Platen [1992]; Öttinger [1996]. We will follow here the more physical line of reasoning of Gardiner
[1990].

7.2.1 Denition of the Stochastic Ito Integral
The starting point for the definition of the Ito integral is the following reasoning. For b X t t b const,
the stochastic integral

I
t

t0

bdW s

7.2. STOCHASTIC INTEGRATION 243

is expected to be defined and to be equal to

I b W t W t0

In general it seems to be safe to treat the stochastic integral

I f
t

t0

f X s s dW s

as a kind of Riemann–Stieltjes integral, i.e., as a limit of partial sums. To do so we divide the interval t 0 t
into n subintervals

t0 t1 t2 tn 1 tn t

and define intermediate points ,i

ti 1 ,i ti

The stochastic integral I f is then defined as the limit of the partial sums

Sn

n

i 1
f ,i W ti W ti 1

In general it turns out that the definition of the stochastic integral depends on the particular choice of the
intermediate point ,i. In the definition of the Ito stochastic integral the intermediate points are chosen to be
at the beginning of the corresponding time interval, i.e.,

,i ti 1

Accordingly the Ito stochastic integral is defined as the limit of the partial sums

Sn

n

i 1
f ti 1 W ti W ti 1

The limit of the sequence of partial sums is to be understood in the following sense. The random variable
Sn is said to converge to S in the mean square limit if

lim
n .

Sn S 2 0

The above limit is usually written as

ms- lim
n .

Sn S

In this sense the Ito stochastic integral of the function f t is defined as
t

t0

f x t t dW t ms- lim
n .

n

i 1
f ti 1 W ti W ti 1

7.2.2 The Stratonovich Stochastic Integral
An alternative definition of a stochastic integral has been given by Stratonovich. He suggested the following
definition

S
t

t0

f x t t dW t ms- lim
n .

n

i 1
f

x ti x ti 1
2

ti 1 W ti W ti 1 (7.7)

The S in front of the integral denotes a Stratonovich integral in contrast to the Ito integral. Note, that in this
definition the integrand is evaluated in an averaged way.

244 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

7.2.3 Ito Calculus
We now want to derive some very useful formulas. In order to do so we have to introduce a special class of
functions. A function g t is called a nonanticipating function of t if for all s and t such that t s, g t is
statistically independent of W s W t . In other words g t is independent of the behaviour of the Wiener
process in the future of t. Within the context of the stochastic differential equations such functions are quite
reasonable since they express the fact that the future does not affect the present. This guarantees, evidently,
causality.

We are now in the position to give the proof of the fundamental equation of Ito calculus, namely, that

dW t 2 dt

and that

dW t 2 N 0

for N 1. These formulas will allow for a comfortable handling of stochastic differentials.
We begin by proofing that

t

t0

dW t 2 g t
t

t0

dt g t (7.8)

for a nonanticipating function g t . By definition of the stochastic Ito integral we have

t

t0

dW t 2 g t ms- lim
n .

i
gi 1%W 2

i

lim
n .

i
gi 1%W 2

i

2

Eq. (7.8) is of course to be understood in the mean square sense, so we consider the following expression

I lim
n .

i
gi 1 %W 2

i %ti
2

lim
n .

i
gi 1

2 %W 2
i %t2

i
i j

2gi 1g j 1 %W 2
j %t j %W 2

i %ti

We can now exploit the fact that in the first sum in the above expression the g i 1
2 and %W 2

i %t2
i and

accordingly in the second sum gi 1g j 1 %W 2
j %t j and %W 2

i %ti are statistically independent from
each other because the function g is nonanticipating and because of the properties of the Wiener process.
This statistical independence permits to factorize the mean value. So we find

I 2 lim
n .

i
%ti gi 1

2

where we have used the following properties of the Wiener process

%W 2
i %ti

and

%W 2
i %ti 2 2%t2

i

7.3. ITO STOCHASTIC DIFFERENTIAL EQUATIONS 245

Table 7.1 Multiplication table for products of stochastic differentials.
dW dW 2 dt

dW dt 0 0
dW 2 0 0 0

dt 0 0 0

Hence we can conclude that

ms-lim
n

i
gi 1%W 2

i
i

gi 1%ti 0

Since

ms- lim
n .

i
gi 1%ti

t

t0

dt g t

we have completed the proof of Eq. (7.8). The importance of Eq. (7.8) is the following one. Because of
the definition of stochastic differential equations dW t occurs only in integrals, so that we can explicitly
write

dW t 2 dt

Accordingly, it is straightforward to show that in the same sense

dW t 2 N 0 for N 0

In the following it will be of some importance to have multiplication rules for stochastic differentials. The
following multipication table sums up the rules for products of stochastic differntials. As an example of
the application of the above formulas we consider the integration of a polynomial. Let us look at

d W t n W t dW t n W t n

n

r 1

n
r

W t n rdW t r

Using the fact that dW t r 0 for r 2 we conclude that

d W t n nW t n 1dW t
n n 1

2
W t n 2dt

so that
t

t0

W t ndW t
1

n 1
W t n 1 W t0 n 1 n

2

t

t0

W t n 1dt

7.3 Ito Stochastic Differential Equations
Having defined stochastic integrals the proper definition of a stochastic differential equation can be given
(Again we follow Gardiner [1990]. The mathematically interested reader should consult Gard [1988];
Kloeden und Platen [1992]; Potter [1990]). The stochastic variable X t obeys the Ito stochastic differential
equation

dX t a X t t dt b X t t dW t (7.9)

246 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

if for all t and t0 the following integral equation holds

X t X t0

t

t0

dsa X s s
t

t0

dW s b X s s (7.10)

7.3.1 Ito’s Formula
In this subsection we want to consider a function f of the stochastic variable X t and derive an Ito stochas-
tic differential equation for f . We begin by expanding the differential d f x t to second order in dW t

d f X t f X t dX t f X t

f X t dX t
1
2

f X t dX t 2

Inserting the Ito stochastic differential equation (7.9) for dX t we get

d f X t f X t a X t t dt b X t t dW t
1
2

f X t b X t t 2 dW t 2

where we have discarded all other terms of higher order. Using finally dW t 2 dt we get

d f X t a X t t f X t
1
2

f X t b X t t 2 dt

b X t t f X t dW t (7.11)

The above equation is Ito’s formula and expresses the fact that in general for stochastic differential equa-
tions the change of variables is not given by the rules of ordinary calculus.

7.3.2 The Equivalence of Stochastic Differential Equations and of the Fokker–
Planck Equation

Let us now look at the time development of the expectation value of an arbitrary function f X t . Using
Ito’s formula we immediately have

d f X t
dt

d f X t
dt

d
dt

f X t

a X t t f X t
1
2

f X t b X t t 2

Since, X t is a Markov process it does have a conditional probability density T x t x 0 t0 and accordingly
we can write

d
dt

f X t dx f x
3
3t

T x t x0 t0

dx a X t t f X t
1
2

f X t b X t t 2 T x t x0 t0

The above equation can now be integrated by parts. Disregarding surface terms we obtain

dx f x
3
3t

T dx f x
3
3x

a x t T
1
2
32

3x2 b x t 2T

Since, by construction f is an arbitrary function of x we can conclude that

3
3t

T x t x0 t0
3
3x

a x t T x t x0 t0
1
2
32

3x2 b x t 2T x t x0 t0

We immediately recognize that the above equation is a Fokker–Planck equation. Hence we have shown the
equivalence of a diffusion process defined in terms of a stochastic differential equation with drift coefficient
a x t t and a diffusion coefficient b X t t 2 and the above Fokker–Planck equation.

7.4. THE STRATONOVICH STOCHASTIC DIFFERENTIAL EQUATION 247

7.4 The Stratonovich Stochastic Differential Equation
In subsection 7.2.2 we have seen that it is possible to give other definitions of the stochastic integral. One
such definition is the Stratonovich stochastic integral defined in Eq. (7.7). It is clear that it is then possible
to define stochastic differential equations using the Stratonovich integral, i.e.,

X t X t0

t

t0

ds+ x s s S
t

t0

dW s * x s s (7.12)

In the mathematical literature it is customary to write the Stratonovich integral in the form
t

t0

* x s s dW s S
t

t0

* x s s dW s

where the notation is called the Ito circle. From here on we will also stick to this notation. It is the aim of
this subsection to show that stochastic differential equations defined in terms of the Stratonovich integral
are equivalent to some appropriate Ito stochastic differential equations.

To this end we assume that the above x t is also a solution of the Ito stochastic differential equation

dx t a x t t dt b x t t dW t (7.13)

and try to derive expressions for the corresponding+ and * in Eq. (7.12).
We begin by establishing the relation between the Ito and the Stratonovich integral. By definition of

the Stratonovich integral we have
t

t0

* x s s dW s
i
*

x ti x ti 1
2

ti 1 W ti W ti 1 (7.14)

Using

x ti x ti 1 dx ti 1

the argument of the * function can be written as

*
x ti x ti 1

2
ti 1 * x ti 1

1
2

dx ti 1 ti 1

Then, with the help of the Ito stochastic differential equation (7.13) in the form

dx ti a x ti 1 ti 1 ti ti 1 b x ti 1 ti 1 W ti W ti 1

and of Ito’s formula we get

*
x ti x ti 1

2
ti 1 * ti 1 a ti 1

3
3x
* ti 1

1
4

b2 ti 1
1
2

ti ti 1

1
2

b ti 1
3
3x
* ti 1 W ti W ti 1

The above expression can now be inserted back into the Eq. (7.14). Exploiting the fact that Ito calculus
allows us to set dW 2 dt and to drop the terms dt 2 and dtdW we find

t

t0

* x s s dW s
i
* x ti 1 ti 1 W ti W ti 1

1
2

i
b x ti 1 ti 1

3
3x
* x ti 1 ti 1 ti ti 1

248 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

Since the first term on the right side of the above equation is a partial sum of an Ito integral we conclude
from the above discrete formula that

t

t0

* x s s dW s * x t t dW t
1
2

b x t t
3
3x
* x t t dt (7.15)

The above formula gives us the relation between the Ito and the Stratonovich integral of a function* x t t
in which x t is the solution of the Ito stochastic differential equation (7.13). The relation between the Ito
and the Stratonovich form of stochastic differential equations can be seen by setting

+ x t t a x t t
1
2

b x t t
3
3x

b x t t

* x t t b x t t

We then get the following important equivalence.
The Ito stochastic differential equation

dx adt bdW t (7.16)

is equivalent to the Stratonovich stochastic differential equation

dx a
1
2

b
3
3x

b dt b dW t (7.17)

Conversely, the Stratonovich stochastic differential equation

dx +dt * dW t

is equivalent to the Ito stochastic differential equation

dx +
1
2
*
3
3x
* dt *dW t

7.4.1 Ito or Stratonovich?
We have just seen that a given stochastic differential equation can be interpreted in two ways: in the sense
of Ito and in the sense of Stratonovich. Each of the two interpretations can be converted equivalently in the
other version of the stochastic differential equation. Thus, the question arises: When modeling a physical
system which interpretation should we use?

At the basis of the problem is the fact that in the more physical Langevin equations we are confronted
with a - correlated white noise process. Hence, the proper mathematical analysis of stochastic differential
equations was based on the mathematically safe Wiener process and we were led automatically to the
ambiguities of defining Riemann sums for stochastic integrals.

All these difficulties can be circumvented by the following reasoning. Real processes in nature do have
finite correlation times. Their spectrum might be flat, but not up to infinite frequencies. Such a noise term
is called colored noise and could have zero mean and the following correlation function

9 t 9 t ,
'2

2m
exp m ,

The corresponding colored noise Langevin equation would read

Ẋ t a X t t b X t t 9 t (7.18)

For such a colored noise process the Riemann sums do converge and no ambiguity exists in choosing an
interpretation.

In other words the ambiguities vanish by performing first the integration of the above colored noise
Langevin equation and then perform the white noise limit ' 'm and m .. Proceeding in this way we
automatically get the Stratonovich interpretation of the stochastic differential equation. This is the content
of the Wong-Zakai theorem (Hortshemke und Lefever [1984]). A good discussion of the Ito–Stratonovich
dilemma can be found in van Kampen [1992].

7.5. THE EULER–MARUYAMA METHOD 249

7.5 The numerical integration of stochastic differential equations:
The Euler–Maruyama method

Let us begin this section by review some basic facts of numerical methods for the simulation of determin-
istic ordinary differential equations (Garcia [1994]; Press et al. [1992]). To this end we consider the initial
value problem

dx
dt

a t x

x t0 x0

The most widely used numerical algorithms for the solution of the above problem are techniques. The
simplest such method is the . The basic idea of the Euler method is to approximate the derivative on the
right hand of the differential equation by the first order approximation

dx
dt

x t %t x t
%t

O %t

An approximate solution of the initial value problem can then be constructed by iterating the following
recursion relation

x t %t x t a t x %t

Alternatively, introducing the time discretization t0 t1 tn with equal increments %t the Euler algo-
rithm can be formulated as

xn 1 xn a tn xn %t (7.19)

where it is intended that xn x tn . Once, the initial value x0 has been specified the approximation
x1 x2 xn can be determined by applying Eq. (7.19) recursively.

Let us now turn our attention to the easiest finite difference method for the integration of stochastic dif-
ferential equations Honerkamp [1990]; Kloeden et al. [1994]; Öttinger [1996]. Essentially, we have already
met the easiest method for the numerical integration of stochastic differential equation while motivating
them at the beginning of this chapter. Assume that we are interested in the solution of the following initial
value problem for an Ito stochastic differential equation

dX t a X t t dt b X t t dW t
X t0 X0

where X0 is the initial condition at time t0. The simplest discretization scheme for the above differential
equation is the Euler scheme, which in the context of stochastic differential equations is sometimes called
the Euler–Maruyama method. For a given partition t 0 t1 tn 1 tn tend the Euler scheme is
given by

X̃n X̃n 1 a X̃n 1 tn 1 %tn b X̃n 1 tn 1 %Wn

X̃0 X0

where %tn tn tn 1 and %Wn is the Wiener increment

%Wn W tn W tn 1

Usually, we have %tn %t const, so that we can generate the Wiener increment with the help of the
formula

%Wn 5 %t

where 5 is a gaussian distributed random variable with mean zero and unit variance. The random variable
X̃n generated by this iterative scheme is expected to approximate the stochastic process X t . Sometimes the

250 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

above scheme is also termed the stochastic difference equation associated with the corresponding stochastic
differential equation.

In order to characterize the quality of the approximation schemes for stochastic differential equations
we have to introduce the concept of strong convergence. We say that a discrete approximation X̃ with
maximum time step %t converges strongly to X at time t end if

lim
%t 0

X tend X̃ tend 0

The order of convergence) determines the numerical efficiency of a given numerical approximation
scheme. If there exists a positive constant c, which is independent of %t such that for sufficiently small
-t we have

X tend X̃ tend
2 1 2 c %t)

then we say that the approximation scheme converges strongly with order). The above criterion is simply
the generalization of the usual deterministic convergence criterion and reduces to it when the diffusion
coefficient vanishes and the initial condition is deterministic (Kloeden und Platen [1992]). The concept
of a strongly convergent scheme is relevant for the following reason: A strongly convergent scheme gives
approximations to the individual trajectories of the stochastic process. This is very important when the
simulation is expected to resolve characteristic features of the trajectories of a stochastic process.

It can be shown that the Euler scheme has strong order of convergence) 0 5. Thus the oder of strong
convergence of the stochastic Euler scheme is quite poor.

Fortunately, quite often one is not interested in constructing the individual realizations of the stochastic
process but only in some averaged quantities, e.g., in some moments of the stochastic process. This is
always the case, if the stochastic differential equation is regarded as an efficient numerical tool for the so-
lution of a given Fokker–Planck equation. Namely, the latter contains only information about the moments
of the stochastic process and not about the trajectories themselves. In these cases one is interested in the
weak solutions of stochastic differential equations. An approximation scheme is said to converge weakly
with order) at time tend if for sufficiently smooth functions g there exists a positive constant c, which does
not depend on %t such that for sufficiently small %t we have

g X tend g X̃ tend c %t)

Under suitable smoothness conditions for the functions g the Euler scheme can be shown to have order of
weak convergence) 1.

7.5.1 The Ornstein-Uhlenbeck Process
As a first example of the application of the Euler algorithm we consider again the Ornstein–Uhlenbeck pro-
cess. The implementation of the stochastic Euler algorithm has been realized in the program SDE.java
with the help of the OrnsteinUhlenbeck.javamethod in the simulation.SDE package.

/ a p p l e t a r c h i v e =”SDE. jar ” code =”SDE. c l a s s ”
width =900 h e i g h t =600 / a p p l e t

/

5 /
SDE. java

Euler Method for SDEs

10 Created : Mon May 1 0 0 8 : 1 2 : 1 5 1 9 9 9

@author Pe ter B i e c h e l e
@version 1 . 0

/

7.5. THE EULER–MARUYAMA METHOD 251

15
import j ava . awt . ;
import j ava . awt . even t . ;
import j ava . a p p l e t . ;
import j ava . u t i l . Random ;

20
import s i m u l a t i o n . ;
import s i m u l a t i o n . SDE. ;
import Visua lNumer ic s . math . ;
import ptolemy . p l o t . ;

25
/

S t o c h a s t i c D i f f e r e n t i a l Equa t ions p

A GUI for s i m u l a t i n g SDEs of d i f f e r e n t k inds .
30

/
publ i c c l a s s SDE extends Apple t

implements A c t i o n L i s t e n e r , Runnable
35

p r i v a t e void o u t p u t ()
double s td , yLow , yHigh ;

/ / Output
40 r e a l P l o t . s e t T i t l e ("One Realization") ;

r e a l P l o t . s e tXLabe l ("time t") ;
r e a l P l o t . s e tYLabe l ("x(t)") ;
meanPlot . s e t T i t l e ("Mean <x(t)>") ;
meanPlot . s e tXLabe l ("time t") ;

45 meanPlot . s e tYLabe l ("<x(t)>") ;
boolean connec t = f a l s e ;
for (in t k = 0 ; k ns t ep ; k ++)

/ / compute s tandard d e v i a t i o n of mean
s td =Math . s q r t ((xs td [k] Math . pow (xpos [k] , 2)) / nReal) ;

50 yLow=xpos [k] s td ;
yHigh =xpos [k]+ s td ;
meanPlot . a d d P o i n t W i t h E r r o r B a r s (c o l o r , d e l t a t k , xpos [k] ,

yLow , yHigh , connec t) ;
r e a l P l o t . addPo in t (c o l o r , d e l t a t k , x r e a l [k] , connec t) ;

55 i f (connec t == f a l s e) connec t = true ;

r e a l P l o t . r e p a i n t () ;
meanPlot . r e p a i n t () ;
c o l o r ++;

60 i f (c o l o r 10)
c o l o r = 0 ;

/ / The t h r e e p o s s i b l e parame ter s for the d i f f e r e n t SDEs
65 p r i v a t e s t a t i c double param1 = 1 ;

p r i v a t e s t a t i c double param2 = 1 ;
p r i v a t e s t a t i c double param3 = 1 . 0 ;
p r i v a t e s t a t i c double param4 = 1 . 0 ;
p r i v a t e s t a t i c SDEfunct ion p r o c e s s = new O r n s t e i n U h l e n b e c k () ; ;

70
p r i v a t e s t a t i c double x s t a r t = 1 ;
p r i v a t e s t a t i c double tend = 5 ;

252 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

/ / p u b l i c i n t i s t e p = 4 ;
p r i v a t e s t a t i c double d e l t a t = 0 . 1 ;

75 p r i v a t e s t a t i c in t nReal = 1 0 0 0 ;
p r i v a t e s t a t i c double t s t a r t = 0 ;

p r i v a t e s t a t i c double t , x , normal , sigma , muconst ;
p r i v a t e s t a t i c in t ns t ep = (in t) (tend / d e l t a t) ;

80 p r i v a t e s t a t i c double [] xpos = new double [ns t ep] ;
p r i v a t e s t a t i c double [] xs td = new double [ns t ep] ;
p r i v a t e s t a t i c double [] x fou r = new double [ns t ep] ;
p r i v a t e s t a t i c double [] x r e a l = new double [ns t ep] ;
p r i v a t e s t a t i c Random rand ;

85
p r i v a t e void compute ()

double dW;
double [] te rms = new double [2] ;

90 / / f o r (i n t i s =1; i s =i s t e p ; i s ++)
/ / ns t ep = tend / d e l t a t [i s] ;
/ /

borde r4 . s e t C u r s o r (new Cursor (Cursor . WAIT CURSOR)) ;
95

for (in t i = 1 ; i n s t ep ; i ++)
xpos [i]=0 ;
xs td [i] = 0 ;

xpos [0]= x s t a r t ;
100 x r e a l [0]= x s t a r t ;

x s td [0] = 0 ;

/ / r e a l i z a t i o n loop
rand = new Random () ;

105 for (in t j = 0 ; j nReal ; j ++)
t = t s t a r t ;
x= x s t a r t ;
i f (t h r e a d A c t i v e == f a l s e) return ;
/ / t ime loop

110 for (in t i = 1 ; i n s t ep ; i ++)
t += d e l t a t ;
/ ge t the terms :

d r i f t : a (x , t) = terms [0]
d i f f u s i o n : b (x , t) = terms [1] /

115 te rms = p r o c e s s . SDEterms (x , t) ;
dW=Math . s q r t (d e l t a t) rand . n e x t G a u s s i a n () ;
x += (terms [0] d e l t a t + terms [1] dW) ;
/ / s t o r e v a l u e s in arrays for s t a t i s t i c s
xpos [i]+= x ;

120 xs td [i]+= x x ;
x four [i]= x x x x ;
i f (j ==0)

x r e a l [i]= x ;

125 / / end r e a l i z a t i o n s

for (in t i = 1 ; i n s t ep ; i ++)
xpos [i] /= nReal ;
xs td [i] /= nReal ;

130 xfour [i] /= nReal ;

7.5. THE EULER–MARUYAMA METHOD 253

borde r4 . s e t C u r s o r (new Cursor (Cursor . DEFAULT CURSOR)) ;

135 p r i v a t e s t a t i c P l o t meanPlot , r e a l P l o t ;
p r i v a t e s t a t i c T e x t F i e l d t e x t F i e l d P a r a m 1 , t e x t F i e l d P a r a m 2 , t e x t F i e l d R e a l ,

t e x t F i e l d D T , t e x t F i e l d T e n d , t e x t F i e l d X s t a r t , t e x t F i e l d P a r a m 3 ,
t e x t F i e l d P a r a m 4 ;

p r i v a t e Choice c h o i c e P r o c e s s ;
140 p r i v a t e But ton gobu t ton = new But ton ("go") ;

p r i v a t e But ton s t o p b u t t o n = new But ton ("stop") ;
p r i v a t e But ton c l e a r b u t t o n 1 = new But ton ("clear left plot") ;
p r i v a t e But ton c l e a r b u t t o n 2 = new But ton ("clear right plot") ;
p r i v a t e But ton b u t t o n P r i n t L e f t = new But ton ("print left") ;

145 p r i v a t e But ton b u t t o n P r i n t R i g h t = new But ton ("print right") ;
p r i v a t e Panel g r id13 = new Panel (new GridLayout (1 , 4 , 5 , 5)) ;
p r i v a t e Label t e n d l a b e l = new Label ("t end" , Label . LEFT) ;
p r i v a t e Label x s t a r t l a b e l = new Label ("x start" , Label . LEFT) ;
p r i v a t e Label d t l a b e l = new Label ("delta t" , Label . LEFT) ;

150 p r i v a t e Label l abe lPa ram1 = new Label ("Param1" , Label . LEFT) ;
p r i v a t e Label l abe lPa ram2 = new Label ("Param2" , Label . LEFT) ;
p r i v a t e Label l abe lPa ram3 = new Label ("Param3" , Label . LEFT) ;
p r i v a t e Label l abe lPa ram4 = new Label ("Param4" , Label . LEFT) ;
p r i v a t e Label l a b e l R e a l = new Label ("N Real" , Label . LEFT) ;

155 p r i v a t e Panel g r i d S o u t h = new Panel (new GridLayout (2 , 1 , 5 , 5)) ;
p r i v a t e Panel flow7 = new Panel (new FlowLayout (FlowLayout . LEFT , 5 , 5)) ;
p r i v a t e Panel flow8 = new Panel (new FlowLayout (FlowLayout . LEFT , 5 , 5)) ;
p r i v a t e Panel bo rde r4 = new Panel (new BorderLayou t (5 , 5)) ;
p r i v a t e Label l a b e l P r o c e s s = new Label ("Which SDE ?" , Label . LEFT) ;

160 / / p r i v a t e s t a t i c ProgressBar p r o g r e s s = new Progres sBar (0 , 1 0 0) ;

publ i c void a c t i o n P e r f o r m e d (Ac t ionEven t ev t)
i f (ev t . g e t S o u r c e () = = c l e a r b u t t o n 1)

r e a l P l o t . c l e a r (true) ;
165 r e a l P l o t . r e p a i n t () ;

i f (ev t . g e t S o u r c e () = = c l e a r b u t t o n 2)
meanPlot . c l e a r (true) ;
meanPlot . r e p a i n t () ;

170
i f (ev t . g e t S o u r c e () = = s t o p b u t t o n)

i f (t h r e a d A c t i v e == true)
t h r e a d A c t i v e = f a l s e ;
bo rde r4 . s e t C u r s o r (new Cursor (Cursor . DEFAULT CURSOR)) ;

175 / / p r o g r e s s . s e t V a l u e (0) ; / / p r o g r e s s bar

i f (a p p l i c a t i o n == true)
i f (ev t . g e t S o u r c e () = = b u t t o n P r i n t L e f t)

180 Prin tComponent . Dia log (frame , r e a l P l o t , "Print Left Plot") ;

i f (ev t . g e t S o u r c e () = = b u t t o n P r i n t L e f t)
Pr in tComponent . Dia log (frame , meanPlot , "Print Right Plot") ;

185
i f (ev t . g e t S o u r c e () = = gobu t ton)

i f (t h r e a d A c t i v e == f a l s e)
/ / d e r e f e r n e c e the old thread to s top i t c o m p l e t e l y !

254 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

c a l c T h r e a d = nul l ;
190 c a l c T h r e a d = new Thread (prg) ;

param1 =Double . va lueOf (t e x t F i e l d P a r a m 1 . g e t T e x t ()) . doub leVa lue () ;
param2 =Double . va lueOf (t e x t F i e l d P a r a m 2 . g e t T e x t ()) . doub leVa lue () ;
param3 =Double . va lueOf (t e x t F i e l d P a r a m 3 . g e t T e x t ()) . doub leVa lue () ;
param4 =Double . va lueOf (t e x t F i e l d P a r a m 4 . g e t T e x t ()) . doub leVa lue () ;

195 nReal = I n t e g e r . va lueOf (t e x t F i e l d R e a l . g e t T e x t ()) . i n t V a l u e () ;
d e l t a t =Double . va lueOf (t e x t F i e l d D T . g e t T e x t ()) . doub leVa lue () ;
tend =Double . va lueOf (t e x t F i e l d T e n d . g e t T e x t ()) . doub leVa lue () ;
x s t a r t =Double . va lueOf (t e x t F i e l d X s t a r t . g e t T e x t ()) . doub leVa lue () ;
n s t ep = (in t) (tend / d e l t a t) ;

200 xpos = new double [ns t ep] ;
x s td = new double [n s t ep] ;
x four = new double [n s t ep] ;
x r e a l = new double [ns t ep] ;
/ / c r e a t e the d e s i r e d p r o c e s s

205 S t r i n g dummyString = c h o i c e P r o c e s s . g e t S e l e c t e d I t e m () ;
i f (dummyString . e q u a l s ("Mean Reverting Random Walk"))

p r o c e s s = new MeanRevertingRW (param1 , param2 , param3) ;
e l s e i f (dummyString . e q u a l s ("Ornstein Uhlenbeck Process"))

p r o c e s s = new O r n s t e i n U h l e n b e c k (param1 , param2) ;
210 e l s e i f (dummyString . e q u a l s ("Lognormal Random Walk"))

p r o c e s s = new LognormalRW (param1 , param2) ;
e l s e i f (dummyString . e q u a l s ("Noise Induced Transition"))

p r o c e s s = new N o i s e I n d u c e d T r a n s i t i o n (param1) ;
e l s e i f (dummyString . e q u a l s ("Stochastic Resonance"))

215 p r o c e s s = new S t o c h a s t i c R e s o n a n c e
(param1 , param2 , param3 , param4) ;

t h r e a d A c t i v e = true ;
c a l c T h r e a d . s t a r t () ;

220

publ i c s t a t i c Thread c a l c T h r e a d , c u r r e n t ;
p r i v a t e s t a t i c boolean t h r e a d A c t i v e = f a l s e ; / / c o n t r o l th read e x e c u t i o n

225 publ i c s t a t i c in t c o l o r = 0 ;

publ i c s t a t i c SDE prg ;
publ i c s t a t i c Frame frame ;
publ i c s t a t i c boolean a p p l i c a t i o n = f a l s e ;

230
publ i c SDE()

t h i s . s e t L a y o u t (new BorderLayou t ()) ;

meanPlot = new ptolemy . p l o t . P l o t () ;
235 r e a l P l o t = new ptolemy . p l o t . P l o t () ;

c h o i c e P r o c e s s = new Choice () ;

meanPlot . s e t L a b e l F o n t ("Serif-bold-16") ;
meanPlot . s e t T i t l e F o n t ("Serif-bold-24") ;

240
r e a l P l o t . s e t L a b e l F o n t ("Serif-bold-16") ;
r e a l P l o t . s e t T i t l e F o n t ("Serif-bold-24") ;

t e x t F i e l d T e n d = new T e x t F i e l d (new Double (tend) . t o S t r i n g () , 5) ;
245 t e x t F i e l d X s t a r t = new T e x t F i e l d (new Double (x s t a r t) . t o S t r i n g () , 5) ;

t e x t F i e l d D T = new T e x t F i e l d (new Double (d e l t a t) . t o S t r i n g () , 6) ;

7.5. THE EULER–MARUYAMA METHOD 255

t e x t F i e l d R e a l = new T e x t F i e l d (new I n t e g e r (nReal) . t o S t r i n g () , 8) ;
t e x t F i e l d P a r a m 1 = new T e x t F i e l d (new Double (param1) . t o S t r i n g () , 5) ;
t e x t F i e l d P a r a m 2 = new T e x t F i e l d (new Double (param2) . t o S t r i n g () , 5) ;

250 t e x t F i e l d P a r a m 3 = new T e x t F i e l d (new Double (param3) . t o S t r i n g () , 5) ;
t e x t F i e l d P a r a m 4 = new T e x t F i e l d (new Double (param4) . t o S t r i n g () , 5) ;

g r id13 . add (gobu t ton) ;
g r id13 . add (s t o p b u t t o n) ;

255 gr id13 . add (c l e a r b u t t o n 1) ;
g r id13 . add (c l e a r b u t t o n 2) ;
i f (a p p l i c a t i o n == true)

g r id13 . add (b u t t o n P r i n t L e f t) ;
g r id13 . add (b u t t o n P r i n t R i g h t) ;

260 / / Ac t ion L i s t e n e r
s t o p b u t t o n . a d d A c t i o n L i s t e n e r (t h i s) ;
gobu t ton . a d d A c t i o n L i s t e n e r (t h i s) ;
c l e a r b u t t o n 1 . a d d A c t i o n L i s t e n e r (t h i s) ;
c l e a r b u t t o n 2 . a d d A c t i o n L i s t e n e r (t h i s) ;

265 b u t t o n P r i n t L e f t . a d d A c t i o n L i s t e n e r (t h i s) ;
b u t t o n P r i n t R i g h t . a d d A c t i o n L i s t e n e r (t h i s) ;

t e x t F i e l d T e n d . se tBackground (SystemColor . window) ;
t e x t F i e l d T e n d . s e t F o r e g r o u n d (SystemColor . windowText) ;

270 t e x t F i e l d D T . se tBackground (SystemColor . window) ;
t e x t F i e l d D T . s e t F o r e g r o u n d (SystemColor . windowText) ;
t e x t F i e l d P a r a m 1 . se tBackground (SystemColor . window) ;
t e x t F i e l d P a r a m 1 . s e t F o r e g r o u n d (SystemColor . windowText) ;
t e x t F i e l d P a r a m 2 . se tBackground (SystemColor . window) ;

275 t e x t F i e l d P a r a m 2 . s e t F o r e g r o u n d (SystemColor . windowText) ;
t e x t F i e l d R e a l . s e tBackground (SystemColor . window) ;
t e x t F i e l d R e a l . s e t F o r e g r o u n d (SystemColor . windowText) ;
g r i d S o u t h . add (flow7) ;
g r i d S o u t h . add (flow8) ;

280 f low7 . add (l abe lPa ram1) ;
f low7 . add (t e x t F i e l d P a r a m 1) ;
f low7 . add (l abe lPa ram2) ;
f low7 . add (t e x t F i e l d P a r a m 2) ;
f low7 . add (l abe lPa ram3) ;

285 f low7 . add (t e x t F i e l d P a r a m 3) ;
f low7 . add (l abe lPa ram4) ;
f low7 . add (t e x t F i e l d P a r a m 4) ;
c h o i c e P r o c e s s . addI tem ("Ornstein Uhlenbeck Process") ;
c h o i c e P r o c e s s . addI tem ("Lognormal Random Walk") ;

290 c h o i c e P r o c e s s . addI tem ("Mean Reverting Random Walk") ;
c h o i c e P r o c e s s . addI tem ("Noise Induced Transition") ;
c h o i c e P r o c e s s . addI tem ("Stochastic Resonance") ;
f low7 . add (l a b e l P r o c e s s) ;
f low7 . add (c h o i c e P r o c e s s) ;

295 f low8 . add (l a b e l R e a l) ;
f low8 . add (t e x t F i e l d R e a l) ;
f low8 . add (d t l a b e l) ;
f low8 . add (t e x t F i e l d D T) ;
flow8 . add (t e n d l a b e l) ;

300 f low8 . add (t e x t F i e l d T e n d) ;
f low8 . add (x s t a r t l a b e l) ;
f low8 . add (t e x t F i e l d X s t a r t) ;
r e a l P l o t . s e t B u t t o n s (true) ;
r e a l P l o t . s e t C u r s o r (new Cursor (Cursor . HAND CURSOR)) ;

256 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

305 meanPlot . s e t B u t t o n s (true) ;
meanPlot . s e t C u r s o r (new Cursor (Cursor . HAND CURSOR)) ;
bo rde r4 . add ("North" , g r id13) ;
bo rde r4 . add ("South" , g r i d S o u t h) ;
Panel g r i d = new Panel (new GridLayout (1 , 2)) ;

310 g r i d . add (r e a l P l o t) ;
g r i d . add (meanPlot) ;
bo rde r4 . add ("Center" , g r i d) ;
add ("Center" , bo rde r4) ;

315
publ i c s t a t i c void main (S t r i n g [] a rgs)

a p p l i c a t i o n = true ;
prg = new SDE() ;
frame = new Frame ("Stochastic Differential Equations") ;

320 frame . addWindowLis tener (new WindowAdapter ()
publ i c void windowClosing (WindowEvent e) System . e x i t (0) ;

) ;
frame . add (BorderLayou t . CENTER, prg) ;
frame . pack () ;

325 frame . s e t V i s i b l e (true) ;
prg . i n i t () ; / / s t a r t a p p l e t
prg . s t a r t () ; / / s t a r t Thread

330 publ i c void i n i t ()
i f (prg == nul l)

prg = new SDE () ;
c u r r e n t = Thread . c u r r e n t T h r e a d () ;
c a l c T h r e a d = new Thread (prg) ;

335 c a l c T h r e a d . s e t P r i o r i t y (c u r r e n t . g e t P r i o r i t y () 1) ;
t h r e a d A c t i v e = true ;
c a l c T h r e a d . s t a r t () ; / / c a l l s the run () method ! !

340 publ i c void s t a r t ()
bo rde r4 . s e t C u r s o r (new Cursor (Cursor . WAIT CURSOR)) ;
t h r e a d A c t i v e = true ;

345 publ i c void s top ()
bo rde r4 . s e t C u r s o r (new Cursor (Cursor . DEFAULT CURSOR)) ;
t h r e a d A c t i v e = f a l s e ;

350 publ i c void run ()
i f (t h r e a d A c t i v e == f a l s e) return ;
/ / p r o g r e s s . s e t V a l u e (0) ; / / p r o g r e s s bar
compute () ;
i f (t h r e a d A c t i v e == f a l s e) return ;

355 o u t p u t () ;
t h r e a d A c t i v e = f a l s e ;

/ / SDE

package s i m u l a t i o n . SDE;

7.5. THE EULER–MARUYAMA METHOD 257

/
O r n s t e i n U h l e n b e c k . java

5

Created : Tue Jun 1 1 0 : 5 0 : 3 0 1 9 9 9

@author Pe ter B i e c h e l e
10 @version 1 . 0

/

/
p

15 A c l a s s imp lemen t ing the SDEfunc t ion i n t e r f a c e for s o l v i n g
a s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n (SDE) .

p
You can access a l l parame ter s by us ing the s tandard bean
method names . For example to ge t a parameter ” t e s t ” you s imp ly

20 c a l l the method g e t T e s t () o f the o b j e c t and to s e t a parameter
”sigma ” you c a l l s e tS igma (va lue) .

p
Here an O r n s t e i n Uhlenbeck Process i s d e f i n e d .

p
25 dX = d r i f t X dt + d i f f u s i o n dW

p
/

publ i c c l a s s O r n s t e i n U h l e n b e c k implements SDEfunct ion

30 p r i v a t e double d r i f t ;
p r i v a t e double d i f f u s i o n ;

publ i c O r n s t e i n U h l e n b e c k ()
t h i s (1 . 0 , 1 . 0) ;

35 publ i c O r n s t e i n U h l e n b e c k (double param1 , double param2)
d r i f t =param1 ;
d i f f u s i o n =param2 ;

publ i c double g e t D r i f t ()
40 return t h i s . d r i f t ;

publ i c double g e t D i f f u s i o n ()
return t h i s . d i f f u s i o n ;

publ i c void s e t D r i f t (double param)
45 t h i s . d r i f t =param ;

publ i c void s e t D i f f u s i o n (double param)
t h i s . d i f f u s i o n =param ;

publ i c double [] SDEterms (double x , double t)
50 double [] r e t V a l = new double [2] ;

r e t V a l [0] = d r i f t x ;
r e t V a l [1] = Math . s q r t (d i f f u s i o n) ;
return r e t V a l ;

55

/ / O r n s t e i n U h l e n b e c k

The algorithm is very similar to the algorithm for the generation of exact trajectories of the Ornstein–
Uhlenbeck process. Instead of looking at the realizations we estimate the expectation value for X 2 at
the fixed final time tend=4 (tstart=0). Choosing q 1 and D 1 the exact value of X 2 t 4 is

258 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

Table 7.2 Results of the simulation of the Ornstein–Uhlenbeck process with the stochastic Euler method
for different values of the time step. The parameters of the Ornstein-Uhlenbeck process are q=1, D=1.
The simulation was run from tstart=0 to tend=4 for 50000 realizations. The timesteps used are
deltat=0.2, 0.1, 0.05, 0.025.

%t X2 '

0.2 0.557979 0.00354552
0.1 0.523506 0.00331771

0.05 0.511591 0.00322181
0.025 0.506859 0.00320129

0 0.05 0.1 0.15 0.2 0.25
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57
Ornstein!Uhlenbeck process

time step

<x
2 >

Figure 7.1: Results of the simulation of the Ornstein–Uhlenbeck process with the stochastic Euler method for different
values of the time step. The parameters of the Ornstein-Uhlenbeck process are q=1, D=1. The simulation was run from
tstart=0 to tend=4 for 50000 realizations. The timesteps used are deltat=0.2, 0.1, 0.05, 0.025.

expected to be

X2 t 4
1
2

1 exp 8 0 4998

Since we know from the general discussion of the Euler algorithm that the expectation values converge to
the exact result linearly with the time step we have included in the program a for loop over istep time
steps deltat to see explicitly this dependence. At the end of the simulation we perform a linear fit of the
results with the help of the function polyfit in order to be able to extrapolate the results to %t 0.

The results of the simulation for 50.000 realizations and deltat=0.2, 0.1, 0.05, 0.025 are
summarized in the following table The same data have been plotted in Fig. (7.5.1). The figure clearly shows
the expected linear convergence of the estimate to the expected exact result. The linear extrapolation leads
to the estimate X 2

t 4 0 497182, which is in very good agreement with the expected exact result.

7.5.2 Noise Induced Transitions
In this second example of the application of the stochastic Euler method we want to simulate a stochastic
differential equation with multiplicative noise and consider noise induced transitions.

7.5. THE EULER–MARUYAMA METHOD 259

Let us begin by looking at the following deterministic dynamical system

d
dt

x t
1
2

x t

for x 0 1 . Obviously, this dynamical system has one fix point at x 0 1 2. This fix point can be shown
to be asymptotically stable.

We now want to perturb this system by adding a multiplicative noise term on the right hand of the
above equation of motion. To be precise we want to replace the deterministic equation of motion by the Ito
stochastic differential equation

dX t
1
2

X t X t dt (X t 1 X t dW t (7.20)

where (0
In order to understand the results of the simulation we want to look at the stationary solution of the

corresponding Fokker–Planck equation. The latter reads

3
3t

3
3x

a X t P X t
1
2
32

3x2 b X t P X t

where we have used

a X t
1
2

X t X t

and

b X t (X t 1 X t 2

Of course, the stationary solution has to satisfy

lim
t .

3
3t

P X t 0

and hence

d
dx

a X t P X t
1
2
32

3x2 b X t P X t 0

The above equation can be written as

d
dx

J x 0 (7.21)

with

J x a X t P X t
1
2
3
3x

b X t P X t

In order to satisfy Eq. (7.21) J must be constant. If we assume that the stationary density PS x 0 for
x . then the constant in question must be zero and we can conclude that

d
dx

b x PS x 2a X PS x

Dividing both sides by b x PS x we get

d b x PS x
b x PS x

2a x
b x

260 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

Integrating the above expression gives

ln b x PS x
x

c

dx
2a x
b x

or

PS x
N

b x
exp # x

where

x
x

c

dx
2a x
b x

The factor N is a normalization constant to be chosen such that

b

a

PS x dx 1

Transposing the above sketched general theory to the stochastic differential equation of interest we get
the stationary density, which is sometimes also called the invariant density,

PS x
N

x 1 x
exp

1
(2x 1 x

Now we are in the position to simulate the stochastic differential equation (7.20). This will be done with
the help of the programSDE.java and the functionsimulation.SDE.NoiseInducedTransition.java.

package s i m u l a t i o n . SDE;

/
N o i s e I n d u c e d T r a n s i t i o n . java

5

Created : Tue Jun 1 1 0 : 5 0 : 3 0 1 9 9 9

@author Pe ter B i e c h e l e
10 @version 1 . 0

/

/
p

15 A c l a s s imp lemen t ing the SDEfunc t ion i n t e r f a c e for s o l v i n g
a s t o c h a s t i c d i f f e r e n t i a l e q u a t i o n (SDE) .

p
You can access a l l parame ter s by us ing the s tandard bean
method names . For example to ge t a parameter ” t e s t ” you s imp ly

20 c a l l the method g e t T e s t () o f the o b j e c t and to s e t a parameter
”sigma ” you c a l l s e tS igma (va lue) .

p
Here an example of a no i se induced t r a n s i t i o n . The p r o c e s s i s
d e f i n e d by a p o t e n t i a l U(x) = x (1 x) .

25 p
dX = X(0.5 X) dt + (e p s i l o n x (1 x)) ˆ 2 dW

p

7.5. THE EULER–MARUYAMA METHOD 261

/
publ i c c l a s s N o i s e I n d u c e d T r a n s i t i o n implements SDEfunct ion

30
p r i v a t e double e p s i l o n ;

publ i c N o i s e I n d u c e d T r a n s i t i o n ()
t h i s (1 . 0) ;

35 publ i c N o i s e I n d u c e d T r a n s i t i o n (double param1)
e p s i l o n =param1 ;

publ i c double g e t E p s i l o n ()
return t h i s . e p s i l o n ;

40
publ i c void s e t E p s i l o n (double param)

t h i s . e p s i l o n =param ;

publ i c double [] SDEterms (double x , double t)
45 double [] r e t V a l = new double [2] ;

double dummy=x (1 x) ;

r e t V a l [0] = dummy ;
r e t V a l [1] = Math . pow (e p s i l o n dummy , 2) ;

50 return r e t V a l ;

/ / N o i s e I n d u c e d T r a n s i t i o n

The program generates trajectories of the stochastic process with the help of the Euler algorithm. At
the end of the simulation we evaluate numerically the stationary distribution with the help of the plotting
functions in the simulation package.

In a first run we perform a simulation of 5000 trajectories for the following parameters xstart=0.5,
epsilon=1, tend=4, and deltat=0.01. The initial condition was always chosen to bexstart=0.5.
The resulting histogram of the invariant density can be seen in Fig. (7.5.2).

It is clear from the histogram that the most probable value of X lies around 0.5 and is therefore identical
with the fixed point of the corresponding deterministic process.

Now we run the program with the same parameters as above but choose the multiplicative noise constant
to be epsilon=3. The result of this second simulation can be seen in Fig. (7.5.2). It is evident from this
figure that the invariant density changes its character. Now there is no longer one value of X which is more
probable. The histogram shows a minimum for X 0 5 and two equally high maxima at around 0.1 and
0.9. As a consequence of the larger noise the system undergoes a ”stochastic bifurcation” which changes
the number of the maxima of the invariant density. Such a phenomenon is called a noise induced transition.

Let us now try to see whether this observation is in agreement with the stationary density we have
derived at the beginning of this subsection. The maxima of the stationary distribution are easily evaluated
from the equation

0
d
dx

PS xm

which explicitly reads

0 1 2xm 1 (2xm 1 xm

For 0 (2 the invariant density has an extremum, namley a maximum at x m x0 1 2, which is the
fixed point of the deterministic equation of motion. For (2 the invariant density posses a minimum at
x0 1 2 and two maxima of equal height at xm1 m2

xm1 m2
1
2

1 1 4 (2

262 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450
Noise induced transition

x

in
va

ria
nt

 d
en

sit
y

(u
nn

or
m

al
ize

d)

Figure 7.2: Histogram of the invariant density of the stochastic differential equation with multiolicative noise. The
simulation was run from tstart=0 to tend=4 for 5000 realizations. The initial condition was chosen to be xs-
tart=0.5. The timestep used was deltat=0.01 and the multiplicative noise constant was epsilon=1.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600
Noise induced transition

x

in
va

ria
nt

 d
en

sit
y

(u
nn

or
m

al
ize

d)

Figure 7.3: Histogram of the invariant density of the stochastic differential equation with multiolicative noise. The
simulation was run from tstart=0 to tend=4 for 5000 realizations. The initial condition was chosen to be xs-
tart=0.5. The timestep used was deltat=0.01 and the multiplicative noise constant was epsilon=3.

7.6. STOCHASTIC RESONANCE 263

Thus for the value ofepsilon=3 chosen in the second simulation the maxima are expected to be at 0.8727
and 0.1273 respectively. The histogram reproduced in Fig. (7.5.2) is in agreement with this theoretical
prediction.

7.6 Stochastic Resonance
In order to get aquainted with the numerical integration of stochastic differential equations we discuss
a phenomenon which occurs as the response of a nonlinear system in the presence of noise: stochastic
resonance. For a comprehensive introduction see Lanzara et al. [1997]; Bulsara und Gammaitoni [1996].
We already know that the effect of noise on the time evolution of deteministic linear system is rather trivial.
If the statistical properties of the input noise are known it is straightforward to compute the statistical
properties of the output signal. For nonlinear systems the situation changes dramatically. The presence of
the noise influences the evolution of the system often in a counterintuitive way. The numerical integration
of the corresponding stochastic differential equations allows us to look at the realizations of the process
and to gain insight in these interesting phenomena.

The phenomenon of stochastic resonance was proposed by Benzi et al. Benzi et al. [1982, 1981] in a
series of papers in which they address the problem of the periodic switching of the Earth’s climate between
periods of relative warmth and ice ages. It is known from the statistical analysis of continental ice volume
over the last million years that this switching is random and that it occurs with an approximate period of
100000 years. It is as well known that the eccentricity of the Earth orbit varies with roughly the same
period. However, the associated variations of the solar energy influx on the earth surface are so small, that
climatologists doubt that such a small external periodic force effect might induce such climatic changes. In
their seminal papers Benzi et al. represent the global climate with the help of a bistable “climatic potential”.
One minimum of the potential represents a small temperture typical of an ice age, the other one a more
warm climate. These authors then show that the weak periodic variation of the eccentricity together with
other random perturbations modelled as additive noise (e.g. short–term climate fluctuations) might explain
the periodicity observed for the transition between one and the other of the two stable climate states. They
name this phenomenon stochastic resonance for the following reason: the signal–to–noise ratio, i.e. the
response of the system, is maximized when a parameter of the stochastic force is tuned to an optimal value.

It is the aim of this section to introduce the basic principles of stochastic resonance McNamara und
Wiesenfeld [1989]; Gammaitoni et al. [1998] and to simulate a simple model showing this phenomenon.
It is clear from the example discussed above that the basic mechanism of stochastic resonance relies upon
three essential ingredients: a bistable system, a periodic driving signal, and a noise signal.

The simplest version of a one–dimensional nonlinear dynamical system is the damped anharmonic
oscillator with the following equation of motion

m
d2x
dt2 &

dx
dt

dU x
dx

D! t (7.22)

The above Langevin equation describes the motion of a classical particle of mass m in a potential U x and
with an additive stochastic force ! t , where ! t is a Gaussian white noise characterized by

! t 0; ! t ! t - t t (7.23)

The potential U is bistable and we assume that it has the simple form (see figure 7.4)

U x a
x2

2
b

x4

4
(7.24)

For a 0 the potential U is bistable with an unstable state at x 0 and two stable states at xs a b.
The stable states are separated by a barrier of height %U a2 4b. The system remains dynamically stable
for b 0, and becomes monostable for a 0. Furthermore we assume that the system is overdamped
by neglecting the inertial term md 2x dt2. Rescaling the resulting Langevin equation with the damping
constant & we finally obtain the so–called stochastic Ginzburg–Landau equation

dx t
dt

ax bx3 D! t (7.25)

264 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 7.4: The potential U x a x2

2 b x4

4 for a 1 and b 1.

7.6. STOCHASTIC RESONANCE 265

an equation which is often encountered in the theory of nonequilibrium critical phenomena.

7.6.1 Reaction Rate Theory
Let us now investigate some fundamental properties of the above dynamical system. We begin by consid-
ering the case D 0 (no fluctuations). If the system is initially in a stable state it remains there for ever.
The typical local time scale is the relaxation time ,r inside the wells. This time scale can be determined by
considering small variations around the minimum of the well. To do so we linearize Eq. (7.25) around the
stable state xs a b with the help of

x t xs -x t (7.26)

and obtain

d -x
dt

2a-x (7.27)

Thus, the time scale ,r of the relaxation inside the wells is

,r
1

2a
1

U xs
(7.28)

The situation changes in the presence of noise. The fluctuating forces allow the system to jump between
the two stable states. If the noise strength D is small compared to the barrier height, these jumps are rare
events. It is a well–know result of Kramers reaction–rate theory (see e.g. Hänggi et al. [1990]) that the mean
escape time Te x out of one basin of attraction can be written for sufficiently low noise (%U D 1)in the
form of the Arrhenius law

Te x Aexp %U x D (7.29)

where A is a prefactor which depends on the form of the potential. For the special potential we consider
here, performing a Gaussian approximation of the potentail around the minimum and the maximum and
using the condition %U D 1 one gets the so–called Kramers formula (or Arrhenius formula) for the
escape time of a bistable system

,k
2"

U 0 U xs
exp 2%U D (7.30)

The escape time ,k is the global time scale of the bistable system. The physical content of the assumptions
we stated above is the following one: The Kramers time ,k is derived under the assumption that the prob-
ability density within a well is roughly in equilibrium when the escape takes place. Thus, the condition
%U D 1 guarantees that the two time scales, the relaxation time and the Kramers time are different. The
system relaxes quickly (on a short time scale) to a local equilibrium at the stable states and approaches
global equilibrium (transitions over the barrier) on a slow time scale. It follows from Eq. (7.30) that

,k
,r

2 2"exp 2%U D 1 (7.31)

The rate to jump over the barrier Wk is obviously the inverse escape time

wk , 1
k

a
2"

exp 2%U D (7.32)

7.6.2 The Stochastic Resonance
Having reviewed some basic results of the theory of nonlinear stochastic systems we are now ready to look
at the phenomenon of stochastic resonance. In the preceeding subsections we made use only of two of the
basic ingredients of the recipe for stochastic resonance. The phenomenon only occurs in the presence of a

266 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

periodic driving signal. If we add such a signal to the bistable system just considered its dynamics will be
governed by the following Langevin equation

dx
dt

3U x t
3x

D! t (7.33)

where the bistable potential takes now the form

U x t a
x2

2
b

x4

4
Axcos 0st (7.34)

where A and 0s 2" Ts are the amplitude and the frequency of the periodic signal. As a consequence of
the periodic forcing term the potential tilts periodically between up and down. When the periodic force is
at its maximum (or minimum) the difference between the escape rates from the two states is maximum.
The periodic forcing is assumed to be so weak that it can not let the particle roll periodically from one
potential well into the other one. Nevertheless, the noise–induced hopping beween the two wells may
become synchronized with the weak periodic forcing. This is signature of stochastic resonance. Stochastic
resonance manifests itself by a synchronization of activated hopping between the potential minima with
the weak periodic forcing.

The manifestation of the phenomenon may be visualized with the help of the output signal. It is clear
that in the absence of the periodic driving the escape process is induced by the fluctuating force and is
random. Thus, in this case the output signal x t looks like dichotomous noise. The probability density of
residence times between two jumps is exponential

P t
1
,k

exp t ,k (7.35)

where the Kramers time can be interpreted as the mean residence time spent by the system in one well. The
periodic driving force alters this situation. The modulation synchronizes the hopping. The output signal
reveals a quasiperiodic contribution to the jump process, which has a maximum if the system jumps, on
average, two times per cycle of the external forcing. This is the stochastic resonance condition, which for
small driving frequencies 0s 0k can be approximated by Jung [1993]

Ts 2,k
2" 2

a
exp 2%U D (7.36)

The same condition formulated in terms of the noise intensity reads

D0
2%U

ln a 20s
(7.37)

At this resonance condition the coherent contribution of the jump process has a maximum.
Now that we have learned the basic aspects of stochastic resonance let us write a program to simulate

it. Before doing so it is very helpful to write the basic equations of motion in dimensionless form. To this
end we write the bistable potential (7.34) in the form

U x t %U 2
x
xs

2 x
xs

4
U1

x
xs

cos 0st (7.38)

where U1 Axs. The Langevin equation of motion can then be written as

dx
dt

4%U
x
x2

s

x3

x4
s

U1
xs

cos 0st D5 t (7.39)

If we devide the above equation through 4%U and multiply it by x s

1
xs

x2
s

4%U
dx
dt

x
xs

x3

x3
s

U1
4%U

cos 0st
xs

4%U
D5 t (7.40)

7.7. EXERCISES 267

If we now choose the unit of length to be xs and the time unit to be 1 a, note that x2
s 4%U 1 a, the

dimensionless form of the above equation reads

dx x x3 dt
U1

4%U
cos 0st dt D9 t dt (7.41)

where for notational convenience we have named x and t to denote the corresponding dimensionless quan-
tities and D denotes the dimensionless noise intensity. Recall, that in the units defined above D has the
dimension ax2

s .
Before running the program let us formulate the resonace condition in dimensionless units. It follows

from Eq. (7.37) that

D0
1

2ln 1 20s
(7.42)

To give a numerical example, for 0 s 0 1 the time scale matching condition states that we have to choose
D 0 2556. Let us run now the program keeping first 0 s fixed and varying D and then keeping D fixed
and varying 0s.

Here comes the simulation and the discussion.
Now we could discuss:

the periodic response

the signal to noise ratio

Let us finally look at the spectrum of the output signal. ...
Since its original formulation the phenomenon of stochastic resonance has been observed in several

physical and biological systems. These observations are reviewed in Gammaitoni et al. [1998] and the
introductory article Bulsara und Gammaitoni [1996] .

7.7 Exercises
EXERCISE 7.1 Johnson Noise [Gillespie, 1996]
Johnson noise is the thermally generated electrical noise appearing in a conductor. Assume we have a
rigid wire loop of self-inductance L and resistance R at absolute temperature T . We can visualize this
using the figure below.

R

L

V

There is no external potential, just the interactions between the conducting electrons and the vibrations of
the atomic lattice give rise to a temporally varying electromotive force in the loop (for details see [Gillespie,
1996]).

The circuit equation gives (the integral of the electric potential around the loop must be zero)

RI t V t L
dI t

dt
0

Taking averages gives (assume V t 0)

L
d I t

dt
R I t

268 CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS

If we can measure I t we have an experimental way of determining R and L.
We rewrite the first equation using , : L R and V t : Lc1 26 t , where 6 t is a Gaussian white

noise and c 0 constant:
dI t

dt
1
,

I t c1 26 t

This is just the Langevin-equation for an Ornstein-Uhlenbeck process with relaxation time , and diffusion
constant c The diffusion constant c can be calculated by using the equipartition theorem of statistical
mechanics and applying the results for the Ornstein-Uhlenbeck process. We get c 2kT R L 2

Write a program to solve the Langevin equation for I t with the initial condition I t i 0 Use the
Euler method for solving stochastic differential equations. Use the three different sets of parameters:

, 1 c 1 i0 0 %t 0 001

, 1 c 1 i0 0 %t 0 0001

, 0 001 c 1 000 000 i0 0 %t 0 001

(Remark: the first and the third parameter set lead to the same constant ,c 1 2 for discussing , 0, the
limit to Gaussian white noise.)

The exact solution is (N denotes a normal distribution):

I t N i0e
R
L t t0 kT

L
1 e 2 R

L t t0

Also calculate the (auto-)covariance function CI t : cov Is t Is t t (the subscript s indicates
that the process should be stationary) and analyze the spectrum thereof - use a log-log plot for the spectrum.
The spectrum is the cosine transform of CI.

Bibliography

Benzi, R., Parisi, G., Sutera, A. und Vulpiani, A. Stochastic resonance in climatic change. Tellus, 34:10–16,
1982.

Benzi, R., Sutera, A. und Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A, 14:L453–L457,
1981.

Bulsara, Adi R. und Gammaitoni, Luca. Tuning in to Noise. Physics Today, 1996.

Gammaitoni, Luca, Hänggi, Peter, Jung, Peter und Marchesoni, Fabio. Stochastic Resonance. Rev. Mod.
Phys., 70:223–287, 1998.

Garcia, Alejandro L. Numerical Methods for Physics. Prentice Hall, Englewood Cliffs, 1994.

Gard, Thomas C. Introduction to Stochastic Differential Equations. Marcel Dekker, New York, 1988.

Gardiner, C.W. Handbook of Stochastic Methods. Springer Verlag, Berlin, zweite Auflage, 1990.

Gillespie, Daniel T. Markov Processes, An introduction for physical scientists. Academic Press, inc., 1992.

Gillespie, Daniel T. The mathematics of Brownian motion and Johnson noise. American Journal of Physics,
64(3):225–240, 1996.

Hänggi, P., Talkner, P. und Borkocev, M. Reaction–rate theory: fifty years after Kramers. Rev. Mod. Phys.,
62:251–341, 1990.

Honerkamp, Josef. Stochastische Dynamische Systeme. VCH Verlag, Weinheim, 1990.

Hortshemke, W. und Lefever, R. Noise-Induced Transitions, Band 15 von Springer Series in Synergetics.
Springer-Verlag, Berlin, 1984.

Jung, P. Periodically driven stochastic systems. Phys. rep., 234:175–295, 1993.

van Kampen, N. G. Stochastic Processes in Physics and Chemistry. North–Holland, Amsterdam, zweite
Auflage, 1992.

Kloeden, Peter E. und Platen, Eckhard. Numerical Solution of Stochastic Differential Equations.
Sporinger–Verlag, Berlin, 1992.

Kloeden, Peter E., Platen, Eckhard und Schurz, Henri. Numerical Solution of SDE Through Computer
Experiments. Springe–Verlag, Berlin, 1994.

Lanzara, Elisa, Mantegna, Rosario N., Spagnolo, Bernardo und Zangara, Rosalia. Experimental study of a
nonlinear system in the presence of noise: The stochastic resonance. Am. J. Physics, 65:341–349, 1997.

McNamara, Bruce und Wiesenfeld, Kurt. Theory of stochastic Resonance. Phys. Rev. A, 39:4854–4869,
1989.

Öttinger, H. C. Stochastic Processes in Polymeric Fluids. Springer–Verlag, Berlin, 1996.

269

270 BIBLIOGRAPHY

Potter, Philip. Stochastic Integration and Differential Equations. Springer–Verlag, Berlin, 1990.

Press, W. H., Teukolsky, S. A., Vetterlin, W. T. und Flannery, B. P. Numerical Recipes in Fortran, The Art
of Scientific Computing. Cambridge University Press, Cambridge, zweite Auflage, 1992.

Part IV

Advanced Simulation Techniques

271

Chapter 8

Molecular Dynamics

8.1 Introduction
8.1.1 Statistical Properties of Fluids
With this chapter we begin the description of the application of stochastic methods to the simulation of
physical systems. Computer simulations are an essential tool for the understanding of complex physical
systems which complement the more traditional theoretical and experimental approaches. Computer sim-
ulations offer the possibility to investigate the structural, dynamical and thermodynamical properties of
interesting systems. Within statistical physics essentially two different simulation approaches have been
developed: Molecular Dynamics (MD) methods, which we will consider in this chapter and Monte Carlo
methods (MC), which will be introduced in the next one.

The basic idea of the Molecular Dynamics approach is the following one: We know that fluids, e.g.
gases and liquids, are systems which are composed of a large number of particles which are mutually
interacting. Although the most fundamental description of matter at the microscopic level is, of course,
quantum mechanical, in the framework of Molecular Dynamics it is assumed that we can describe the
motion of a single atom or molecule by the classical laws of motion, i.e., by Hamilton equations of motion.
This assumption is justified, if the mean de Broglie wavelength of an atom is much smaller then the mean
distance between atoms. This condition is satisfied if the density of the fluid is sufficiently low or if the
temperature of the fluid is sufficiently high. Thus, it is the aim of Molecular Dynamics to understand the
macroscopic thermodynamic and dynamical properties of a fluid starting from the microscopic equations
of motions of its atoms. To put it differently: Molecular Dynamics is the direct simulation of the equations
of motion of a system composed of N classical mutually interacting particles. The main numerical problem
we have to address in this chapter is the development of an algorithm for the numerical integration of the
equations of motion of N particles.

The numerical solution of classical equations of motion looks like a deterministic process. Why is it
then relevant for us? The answer is very easy. Molecular Dynamics is a beautiful example of a deterministic
Markov process. The temporal evolution of the system is of course deterministic, but the initial condition,
the initial configuration of the atoms in the fluid is random! The initial position as well as the initial veloc-
ities of the particles are random. A Molecular Dynamics simulation solves the Liouville equation, which
as we know is the typical example of the differential Chapman–Kolmogorov equation of a deterministic
Markov process.

8.1.2 Some Historical Comments
The Molecular Dynamics method has been proposed by Alder and Wainwright in 1957 Alder und Wain-
wright [1957, 1959]. They investigated a fluid composed of hard spheres. In this pioneering simulation the
particles moved with constant velocity between two elastic collisions. The first simulation of a real fluid
was published in 1964 by Rahman Rahman [1964]. He simulated liquid Argon assuming a Lennard-Jones
potential for the pair interaction between the atoms (see below). The equations of motion were integrated

273

274 CHAPTER 8. MOLECULAR DYNAMICS

using a stepwise algorithm. It is worth mentioning a citation classic in this context, namely the paper by
Verlet Verlet [1967, 1968], in which the algorithm for the integration of the equations of motion, which
bears his name has been proposed. Since this time Molecular Dynamics developed to a standard tool in
statistical physics. We just want to mention some important steps. 1968 a diatomic molecular fluid was
simulated for the first time ?. 1971 Rahman and Shillinger reported the simulation of liquid water. In
the same year Woodcock investigated a fluid with Coulomb interactions – melted KCl. In 1973 Barojas,
Levesque and Quentrec simulate rigid molecules. In 1977 Camman, Gelin and Karplus apply Molecular
Dynamics to the investigation of proteins. The Molecular Dynamics simulation we mentioned were all
concerned with equilibrium properties of fluids.

At the beginning of the seventies Non–Equilbrium Molecular Dynamics (NEMD) was developed,
which allowed also the investigation of the behaviour of fluids in typical non-equilibrium situations, e.g.,
fluids in thermal gradients, or fluid in shear flow.

At the beginning of the eighties two important papers appeared which reported on the possibility to
include also quantum mechanical effects in the MD simulations.

8.1.3 The Equations of Motion
The classical Molecular Dynamics algorithm solves the equation of motion for a set of N particles. A
mechanical system with 3N degrees of freedom is fully characterised by a set of 3N generalised coordinates
qi, i 1 3N and of 3N generalised momenta pi, i 1 3N. For a given Hamiltonian H the equations
of motion read

q̇i
3H
3pi

for i 1 N

and

ṗi
3H
3qi

for i 1 N

In many cases the potential is conservative and Cartesian coordinates x i and the velocities vi pi mi are
used, where mi denotes the mass of particle i. In these cases the Hamiltonian may be written as

H pi xi

N

i 1

p2
i

2mi
V xi

For this special case the equations of motion read

ẋi vi and miv̇i Fi (8.1)

where the forces are

Fi
3
3xi

V xi

It is clear from Eq. (8.1) that the calculation of the velocities v i is not essential, since the Hamiltonian
equations of motion (8.1) are equivalent to the Newtonian ones

mi
32

3t2 xi Fi xi

Having recalled the equations of motion of classical system composed of N particles we have to address the
two following questions which are essential to all Molecular Dynamics simulations: How do we calculate
the forces? How do we integrate the equations of motion? These questions will be addressed in the
following two sections.

8.2. SIMPLE MODELS AND INTERACTION POTENTIALS 275

Figure 8.1: Plot of the Lennard–Jones potential VLJ . The potential is characterised by the length scale ' and by the
energy (.

Figure 8.2: Plot od the hard shere potential.

8.2 Simple Models and Interaction Potentials
In the first Molecular Dynamics simulation the classical fluid of interest was liquid Argon. In liquid argon
the atoms are chemically inert and can be assumed to be spherical. For this reason the forces between any
two atoms depend only on the distance between the atoms. Thus, considering a system of N atoms the
potential energy may be written as

V
i

V1 ri

external field

i j i
V2 ri r j

Pair interaction

i j i k j i
V3 ri r j rk

3-particle interaction

where the first sum on the right–hand side represents the potential of an external field, the second sum
represents the pair interactions, the third sum represents the three particle interaction, and so on. Of course,
the calculation of the three particle interaction and of interaction of higher order are very expensive from
a computational point of view. Fortunately, in praxis these contributions to the potential can be neglected.
For simple fluids, like Argon, the pairwise interaction V2 depends only on the magnitude of the separation
ri r j between the atoms i and j. For the moment we will also assume that there is no external field acting

on the particles, so that we are left only with the pair interaction potential V2.
This potential can, of course, be determined from first principles using quantum mechanics. These

calculations turn out to be very difficult and so one relies upon phenomenological forms for the potential
V2. For argon and other noble atoms with closed electronic shells, the mutual polarisation of each atom
induces an attractive interaction, which is known as the van der Waals interaction. This interaction has the
form

VvdW I
'
r

6

where I is the ionisation potential of the atom, and ' is a length scale characterising the size of the atom.
When two argon atoms approach each other so closely that their electron shells overlap, the Pauli exclu-

sion principle causes an effective repulsive force. This force increases rapidly with decreasing separation
between the atoms. This effect is called core repulsion. The most common phenomenological form of the
potential V2 is the Lennard–Jones potential

VLJ 4(
'
r

12 '
r

6

A plot of the Lennard–Jones potential can be seen in Fig. (8.2). It is important to notice that V LJ 0 at
r ' and that VLJ r is essentially equal zero for r 3'. The parameter (is the depth of the potential at
the minimum. The minimum occurs at the separation r 2 1 6'. The parameters (1 65 10 21J and
' 3 4A are in good agreement with the experimental properties of liquid argon.

In order to study some special properties of fluids it is sometimes useful to consider less general poten-
tials. The hard–sphere potential is defined as

Vhs r . r '
0 ' r

The hard sphere potential is depicted in Fig. (8.2).
The Lennard–Jones potential may be approximated by the square well potential

Vsw r
. r '1
('1 r '2

0 '2 r

276 CHAPTER 8. MOLECULAR DYNAMICS

Figure 8.3: Plot of the square well potential

Figure 8.4: Plot of the soft sphere potential for) 1 and) 12.

The square well potential is depicted in Fig. (8.2).
The soft sphere potential is defined as

Vss r (
'
r

)

where) is a parameter controlling the strength of the potential. For increasing) the potential gets ”harder”.
In Fig. (8.2) we plot the soft sphere potential for two values of).

We mentioned in the introduction to this chapter that Molecular Dynamics simulations may also be
used to investigate fluids with Coulomb interaction. In this case the potential reads

Vzz ri j
ziz j

4"(0ri j

where zi and z j denote the charge of the ion i and j, respectively.

8.3 Algorithms for the Integration of Newton’s Equations of Motion
In this section we want to get acquainted with algorithms for the numerical integration of Newton’s equa-
tions of motion. We will write them for notational convenience as

d2

dt2 x t f x

where x t and f are vectors with 3N coordinates. Probably, you will already have heard a course on
numerical methods for physics and will therefore suppose that the right algorithms are Runge–Kutta algo-
rithms. As you may remember Runge–Kutta algorithms require the evaluation of the force several times
per time step. Unfortunately, in Molecular Dynamics simulations the evaluation of the forces is the most
time consuming step during the simulation. So, Runge–Kutta methods are not a good choice. We will
therefore have to look at algorithms which require at most one or two evaluations of the forces per time
step.

In the following we will consider finite difference methods in order to compute the values of x n 1 and
vn 1 at time tn 1 tn h, where h denotes the time step of the integration. %t must be chosen in such a
way that the integration methods generates a stable solution. For a conservative system h must be chosen
small enough to ensure that the total energy is conserved within the required accuracy.

8.3.1 Euler Methods
The easiest but not particularly precise choice are Euler algorithms. We write Newton’s equation of motion
in the following form

d
dt

x v t

and

d
dt

v f t

In order to derive an integration algorithm we look at x n 1 x tn h and vn 1 v tn h and expand in
a Taylor series around x tn and v tn , respectively. Keeping terms up to second order in h we obtain the

8.3. ALGORITHMS FOR THE INTEGRATION OF NEWTON’S EQUATIONS OF MOTION 277

Euler method

xn 1 xn hvn
1
2

h2 fn

vn 1 vn h fn

The Euler algorithm can be improved by expanding it to a predictor–corrector scheme. The predictor step
of the modified Euler algorithm reads

yn 1 xn hvn
1
2

h2 fn

f
1
2

fn f yn 1

and the corresponding corrector step is

xn 1 xn hvn
1
2

h fn

yn 1
1
4

f yn 1 fn

vn 1 vn h f

where fn 1 f xn 1 . This modified Euler algorithm is more accurate then the original version, but it
implies a double evaluation of the forces. By choosing

fn 1 f yn

only one evaluation of the forces is necessary. This last predictor/corrector Euler algorithm turns out to be
less accurate then the modified Euler algorithm.

8.3.2 The Gear Algorithm
Some Molecular Dynamics simulations employ the Gear algorithm. The Gear algorithm is a systematic
predictor–corrector scheme. In the first predictor step the positions and the velocities are developed in a
Taylor series. Then the accelerations, which in general are different from those predicted by the Taylor ex-
pansion, are calculated from the new positions. From the difference of the two accelerations one calculates
in the second corrector step corrections to the positions and the velocities. Depending on the order of the
Taylor expansion which are considered one obtains Gear algorithms of different order.

Here, we just want to present the algorithm and refer the interested reader to the original literature Gear
[1971]. The algorithm is based on the definition of the vector

xn xn hxn
1
2

h2xn
1
3!

h3xn

With the help of this vector the predictor step is formulated as

yn 1 Axn

and the corrector step reads

xn 1 yn 1 a
1
2

h2 f yn 1 yn 1

The coefficients of the matrix A and of the vector a in the predictor and in the corrector step have to be
chosen differently for every different order. To give an example, in the Gear algorithm of 4th order the
matrix A is

A

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 3

278 CHAPTER 8. MOLECULAR DYNAMICS

and the vector a is given by

a

1 6
5 6
1

1 3

For the Gear algorithm of 5th order A and a have to be chosen as

A

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 3 4
0 0 0 0 1

and

a

19 20
3 4

1
1 2

1 12

8.3.3 Verlet and Beeman Algorithm
The Verlet Algorithm

One of the most popular algorithms for the integration of Newton’s equations of motion is the Verlet
algorithm. The Verlet algorithm is less accurate then the Gear algorithm but it is simpler and requires much
less memory. Let us consider the Taylor expansion of x t n h and of x tn h

xn 1 xn hxn
1
2

h2xn
1
3!

h3xn

xn 1 xn hxn
1
2

h2xn
1
3!

h3xn

Adding the two above expansions we get

xn 1 2xn xn 1 h2 f xn

This is the Verlet algorithm. Note that velocities do not appear in the above equation. If knowledge about
the velocities is needed, i.e., for computing the kinetic energy, they can be computed as central differences

vn xn 1 xn 1 2h (8.2)

Note, that the Verlet algorithm is not self–starting, since it requires the knowledge of x n and xn 1. If initially
only xn and vn are known, xn 1 can be computed in the first step as

xn 1 xn hvn
1
2

h2 f xn

The global errors associated with the Verlet algorithm are third order for the positions and second–order
for the velocities.

The Velocity Form of the Verlet Algorithm

A mathematically equivalent version of the Verlet algorithm is the so called velocity Verlet algorithm,
which is given by

xn 1 xn vnh
1
2

fnh2

8.3. ALGORITHMS FOR THE INTEGRATION OF NEWTON’S EQUATIONS OF MOTION 279

and

vn 1 vn
1
2

fn 1 fn h

The velocity Verlet algorithm is self–starting and minimises the errors. The equivalence of the two algo-
rithms is best seen in the following way. Adding the expressions for x n 1 and for xn 1 and eliminating
the velocities with the help of the corresponding expression we obtain immediately the Verlet algorithm
from the velocity Verlet algorithm. In the following we will refer the velocity Verlet algorithm as the Verlet
algorihm.

The Beeman Algorithm

Another well–known algorithm is the Beeman algorithm, which also avoids the round–off errors of the
original Verlet algorithm. It can be written in the following form

xn 1 xn vnh
1
6

4 fn fn 1 h2 (8.3)

and

vn 1 vn
1
6

2an 1 5 fn fn 1 h (8.4)

The equivalence of the Beeman algorithm with the Verlet algorithm can be demonstrated in the following
way. It follows from (8.4) that

hvn 1 xn xn 1
1
6

h2 4 fn 1 fn 2 (8.5)

Inserting (8.5) into Eq. (8.4) for vn we obtain

vn xn xn 1
1
3

h2 fn
1
6

h2 fn 1 (8.6)

Finally, the original Verlet algorithm is recovered by inserting the above equation (8.6) into Eq. (8.3).
The velocity Verlet algorithm is probably the most popular integrator for MD applications. It is however

important to remark that it is not necessary to use it. The only criterion for the quality of an algorithm is,
for systems without thermalization, the conservation of energy. All the algorithms we presented have a
stable mean value of the total energy. Of course, the actual value of the energy may fluctuate. As a matter
of fact such deviations are less relevant in algorithms with a higher precision, however the latter may show
a drift in the mean value of the energy.

8.3.4 The Comparison of the Algorithms

In order to compare the algorithms we consider the harmonic oscillator

d2

dt2 x x

with initial condition x 0 1 and v 0 0. The exact solution to the above equation is of course

x t cos t v t sin t

Das gibt eine schoene Uebung!!!!!!!! Plot Vergleich error,...

280 CHAPTER 8. MOLECULAR DYNAMICS

8.4 The Algorithm for the Simulation

8.4.1 Periodic Boundary Conditions

We have seen in the previous section that a Molecular Dynamics code has to store at least 3N coordinates
of the N molecules we are interested in. To this minimal requirements we have to add 3N velocities,
N N 1 2 pair energies, 3N forces and so on. It is clear that depending on the computer at our disposal the
number N of particles can not be made arbitrarily large. Since the aim of a Molecular Dynamics simulation
is to understand the properties of a bulk system, which is typically composed of N 10 23 1025 particles,
it is clear that we can only simulate a fraction of this particles. Typically Molecular Dynamics simulation
operate with 103 up to 105 particles. It is clear that it would not be clever to enclose these particle in a box.
In contrast to bulk systems the fraction of particles near the walls would be very large, and surface effects
would have a dominant role. For example, if we consider a cubic lattice of 512 particles, 296 particles will
be on the surface of the cube. This amounts to 58% of the total number of the particles.

In oder to minimise surface effects and simulate more closely the properties of a bulk system the
following trick is used. One considers a cubic box. The length of the side of the box is L. The box contains
N particles and it is assumed to be in the bulk of the fluid. The box is understood as an element of a lattice
of identical cells, which also contain N particles, which are spatially distributed as in the original cell. A
particle near the border of the cell is surrounded not only from the particles in the original box but also
from the neighbouring particles in the surrounding boxes. If a particle leaves the box in the course of the
simulation through one side of the cubic cell, an identical particle enters the box from the opposite side,
so that the number of particles in the box remains constant. These kind of boundary conditions are called
periodic boundary conditions they are illustrated in Fig. (8.5). Usually, only the coordinates of the original
particles or of their images in the simulation box are saved.

Figure 8.5: Periodic boundary conditions.

In praxis we have to proceed as follows. Let x[i],y[i],z[i] be the coordinates of the particle
with number i, and let L be the length of the side of the simulation box. After each change of the position
of the particles during the MD simulation we have to perform the following operations

if (x[i] > L) x[i] = x[i] - L;
if (x[i] < 0) x[i] = x[i] + L;
if (y[i] > L) y[i] = y[i] - L;
if (y[i] < 0) y[i] = y[i] + L;
if (z[i] > L) z[i] = z[i] - L;
if (z[i] < 0) z[i] = z[i] + L;

8.4.2 Potential Cutoff

Because of the periodic boundary conditions we have to compute the forces in an infinite system. Of course,
this is not feasible. Consider the Lennard–Jones potential. If the distance between two particles is 3' the
potential energy is about a half % of the minimal value (. It would imply a waste in computational power
to try to calculate this small rest. In praxis, for all neutral systems with Lennard–Jones like potential it is
safe to calculate pair–interaction energies only up to the so–called cutoff radius, r c, and to set the potential
energy and the forces for large distances equal to zero, i.e.,

V r V r for r rc
0 otherwise

For the Lennard–Jones potential the cutoff radius is usually chosen to be r c 2 5'.

8.5. ADVANCED AWT FEATURES AND GUIS 281

8.4.3 The Minimum Image Convention
If the cutoff radius rc is smaller than half of the length of the simulation box L, the minimum image
convention may be used. The interaction partners of particle i are those N 1 particles (images) which
lie within an imaginary box, which has the same size as the original simulation box, but is centred around
the position of particle i. Through this convention the particles in the simulation box interact only with
particles which are either themselves in the simulation box or which are shifted in each coordinate by a
factor of L of L (see Fig. (8.6)).

Figure 8.6: The minimum image convention.

We consider the interaction between particle i and particle j. The coordinate differences for the
particles in the simulation box are denoted by xij, yij, and zij. These can be simply evaluated as

xij = x[i] - x[j];
yij = y[i] - y[j];
zij = z[i] - z[j];

The minimum image convention is realized through the following code

if (xij > L/2) xij = xij - L;
if (yij < -L/2) xij = xij + L;

and similarly for yij and zij. From the infinite number of images of particle j we pick out that copy of
it, whose distance from particle i may be less than rc. The minimum distance convention pair–distance is
then computed as

rij = Math.sqrt(xij*xij + yij*yij + zij*zij);

It is important to remark that in the minimum image convention each particle interacts exactly with N 1
particles.

8.4.4 Reduced Variables
In a MD simulation the equations of motion of the particles are integrated many times. It is therefore
important to keep numerical roundoff errors as small as possible. A prerequisite for small roundoff errors
is to choose units in such a way that the quantities which we want to compute are of the order of unity.
The fluids we are concerned with here are Lennard–Jones fluids. So it is natural to assume that the units of
distance and energy are Lennard–Jones parameters ' and (. The units of mass is typically chosen to be the
mass of one atom m. All other quantities can be expressed in terms of ', (and m. Accordingly, velocities
are measured in units of (m 1 2, and time is measured in units of ' m (1 2. All program variables are
expressed in reduced units. Table (8.1) summarises the system of units used in typical molecular dynamics
simulations and shows the corresponding values for argon.

As an example, let us consider a typical molecular program with a dimensionless time step of %t
0 01 which runs for 10000 steps. The total time of the run is 10000 0 01 100 in reduced units or
2 17 10 10s for argon.

8.5 Advanced AWT Features and GUIs
Before going on, we want to discuss some advanced features of the Java AWT package, so that you are
able to understand all the code of the upcoming simulations.

282 CHAPTER 8. MOLECULAR DYNAMICS

Table 8.1 The system of units used in molecular dynamics simulation of particles interacting via a Lennard–
Jones potential. The numerical values for ', (and m are for argon. The quantity k is Boltzmann’s constant
and has the value k 1 38 10 23J K. The unit of pressure is for a two–dimensional system.

quantity unit value for argon
length ' 3 4 10 10m
energy (1 65 10 21J
time ' m (1 2 2 17 10 12s
velocity (m 1 2 1 57 102m s
force (' 4 85 10 12N
temperature (k 120K
pressure ('2 1 43 10 2Nm 1

8.5.1 Mouse Cursor
If you want to use different cursors for the mouse, you have to take a look at the java.awt.Cursor class.
You can define a cursor for every component displayed on the screen. So if you have a canvas and want to
notify the user that there is a calculation going on in this canvas, you just employ the commands:

Canvas canv;
canv.setCursor(Cursor.WAIT_CURSOR); // calculation starts
.....
canv.setCursor(Cursor.DEFAULT_CURSOR); // calculation is finished

8.5.2 ScrollPanes
To use a ScrollPane you just instantiate one, use a Panel inside the ScrollPane if you want to put many
components in it and at last add the ScrollPane to a Container (like a Frame).

import j ava . awt . ;

/
ScrollPaneDemo . java

5

Created : Tue Mar 2 3 1 0 : 5 9 : 4 9 1 9 9 9

@author Pe ter B i e c h e l e
10 @version 1 . 0

/

publ i c c l a s s Scrol lPaneDemo

15 publ i c Scrol lPaneDemo ()

publ i c s t a t i c void main (S t r i n g [] a rgs)
20 Frame f = new Frame ("ScrollPane Demo") ;

f . s e t S i z e (5 0 , 1 0 0) ;

S c r o l l P a n e sp = new S c r o l l P a n e (S c r o l l P a n e . SCROLLBARS ALWAYS) ;

25 Label l = new Label ("A very long test text for "+
"demonstration purposes.") ;

8.5. ADVANCED AWT FEATURES AND GUIS 283

sp . add (l) ;

f . add (sp) ;
30 f . show () ;

/ / ScrollPaneDemo

8.5.3 Properties and Resources
Properties are like Xdefaults in a UNIX environment and deliver information about the run-time environ-
ment. By reading the property list a program can set defaults, choose colors and fonts and more. In Java
1.1 there are 21 system properties defined. Only 9 of them can be accessed by applets, but an application
has access to all of them.

So for example, you can get the file seperator to distinguish between the / on UNIX systems and the \
on Windows systems. You could just use (both as application or applet accesible):

S t r i n g s = System . g e t P r o p e r t y (f i l e . s e p a r a t o r) ;
System . out . p r i n t l n (s) ;

Some important properties are listed in table 8.2. The properties are usually defined in a file some-
where in the java installation. You can also define your own properties and use them for example to read
parameters from local files in a browser. This is the only way to do this, because of security reasons.

Table 8.2 A list of important properties to be read out by a Java program.
Name Description Sample Values Access in Applet
file.separator File separator / or \ YES
java.vendor JVM vendor Netscape Communications YES
line.separator Line separator \n YES
os.arch Operating system architecture x86 or 80486 YES
os.name Operating system name Linux or Windows NT YES
path.separator Path separator : or ; YES
user.home Users home directory /home/john NO
user.name Users login name john NO

Another interesting topic are the resource bundles. With this you can supply a file containing language
depenedent information to your Java program. This is similar to using your own properties (called server
properties). The package responsible for the functionality is the java.util.Properties package.
For a complete description look at the API documentation or take a look at [Zukowski, 1997].

8.5.4 paint(), repaint() and update()
It is now time to sort out these three methods, often used and often confused with each other. To get a
deeper understanding of this topic and some of the other adavanced aspects of the AWT, you actually need
an understanding of threads, which will be discussed in great detail in section 10.3.5. For now it is enough
to know that a thread is a “separate” program running beside yours.

In the molecular dynamics simulation we want to paint the trajectories of the individual particles in a
display area (in Java this is called a Canvas). But if we change the positions of one particle (or more), we
want the display to be refreshed, so that we can actually see the change on the display. Because this is not
automatically done in Java if you change a component, you have to tell the JVM to update the component
in question.

For example if you have a textfield, where you display the actual time of the simulation, it changes
very often and of course you want the display to be updated all the time (do not forget that this is very
time consuming). The first and easiest possibility is to call the repaint() method of a component (or a

284 CHAPTER 8. MOLECULAR DYNAMICS

container). The repaint method then in turn calls the update() method of all components contained in
the component for which the repaint method has been called. Each of the update methods then calls the
corresponding paint() method, which finally displays the change on the screen (see also figure 2.5).

Here an example: you create a Panel, which contains two labels. Now you start a simulation and
change the second label. Now to update the display you have to call the repaint() method of the
Panel object, which then updates the two labels.

The drawback (or advantage) of the repaint() method is that it does not update the components at
once, but waits for some time to do it. If you call it again before update() starts, it does not start it twice,
but only once. So it kind of collects and directs all calls to the update methods.

In our example you might want to redisplay the labels at once, because your simulation calculation
is going on and does not allow the repaint method to start. In this case you have to call the update()
method of the label components yourself and it will redisplay it at once.

A third possibility would be to call the paint() methods of the components to be repainted, but this
is mostly cumbersome and should be avoided.

All this is very important for laying out a new program like the one we want to write now: a molecular
dynamics program.

8.5.5 Events
Now we come to a very important part of writing GUIs: user interaction. A program which has graphical
output is nice, but we still miss the possibility top input data or text using the graphical interface. In Java
this is hidden in the java.awt.event class.

The event model we are discussing in a moment has been introduced into Java in version 1.1 and we
are not going to discuss the old event model of Java 1.0.

If a user presses a key or pushes a mouse button or moves the mouse an event occurs. You can specify
an object (e.g. a button), which should be notified if a special event, like e.g. a mouse button is pushed,
occurs. There are many different events (mouse button, key pressed, etc.) and you can register an event
listener for a certain event to an object (called event source, mostly components). For example you could
register a listener for a mouse button pushed on a button. For that you have to implement the appropiate
interface in your program and register the event listener.

As an example we have already met the case of a closable frame. By default the frame has a close
button decoration on the rigth upper corner. But pushing the mouse button on this decoration does not have
any impact. Usually you want the frame to be closed and the program to exit in that case. So we have to
implement an interface for the pushing of a mouse button and register a listener with the frame:

/ A c l o s a b l e Frame to d e m o n s t r a t e the use of l i s t e n e r and e v e n t s /
import j ava . awt . ;
import j ava . awt . even t . ;

5 publ i c c l a s s Closab leFrame
publ i c s t a t i c void main (S t r i n g [] a rgs)

Frame f ;

f = new Frame ("Closable Frame") ;
10 f . s e t S i z e (2 0 0 , 2 0 0) ;

f . show () ;
/ / Close Window e v e n t
f . addWindowLis tener (new WindowAdapter ()

publ i c void windowClosing (WindowEvent e)
15 System . e x i t (0) ;) ;

In line 9-11 we instantiate a frame and set the size thereof. Then we display it on screen. In line 13-15
we add the listener (here a WindowListener) to the frame and in the same lines implement the interface

8.5. ADVANCED AWT FEATURES AND GUIS 285

(here the WindowAdapter with the windowClosing event). This shortcut of using events is called
“inner classes”. It is the most easy way, if you do not want to write a separate class in a separate file. A
second possibility is to implement the listener and override the corresponding methods (here you would
implement a WindowListener and override the windowClosing() method).

Each event source (component) can have multiple event listeners registered on it. So you could specify
a reaction for a mouse button on a label or a key pressed on the label. You could also register the same
event listener on different event sources: a mouse button can be pressed on a button or on a canvas.

The events are represented by objects, which gives information about the event and identifies the event
source (remember there could be more event sources for a certain event). For example the Button compo-
nent has a method called addActionListener, which you can use. If you have registered this listener
and the user clicks the mouse button on the button, the program stops and the listener is notified by firing an
action event. The listener then calls the actionPerformed(ActionEvent event) method, which
is the only available one for this listener, and executes the code therein. The arguments of the call to this
method is a only a single ActionEvent. This object tells you exactly which kind of event has occured.

To see what kind of events are possible for a particular event source (component) you can take a look
at the API documentation. Look at the methods of the listener classes of the java.awt.event package.
Because for some of the listeners there are many different events possible (like the MouseListener) and
you do not want to overwrite all the methods to implement the listener, you can use the socalled adapter
classes. We have already met them above, where we have used the WindowAdapter. The WindowAdapter
implements all 7 empty methods necessary to have a WindowListener and you can just override the methods
you really need, like window closing above.

java.util.EventObject

java.awt.AWTEvent MenuEvent
(Swing/Java 2)

ActionEvent ItemEvent ComponentEvent

InputEvent

KeyEvent MouseEvent

Figure 8.7: The most important event classes in Java and their structure. In these classes you can find the events
available in Java. There are many events also outside of the AWT, which are not relevant for us.

At last a short summary or instruction of how to implement events in Java:
1. Choose a component (=event source), which you want to be responding to an event, e.g. a Button.

Button but = new Button("Push Me");

2. Take a look at the API documentation of the component, here the class java.awt.Button. At
the beginning of the description of the class methods, you find all relevant listeners available. Here
only the addActionListener()method is meaningful.

3. Now you know what listener to take and can register the listener with the component by using the
above method. You only have to write the code for the reaction to the event (=to implement the lis-
tener interface). If there is only one method to be implemented or you want to implement all possible

286 CHAPTER 8. MOLECULAR DYNAMICS

java.util.EventListener

java.awt.event

ActionListener
MouseListener

MouseMotionListener
WindowListener

TextListenerAdjustmentListener ItemListener
KeyListener

-textValueChanged()-actionPerformed() -itemStateChanged()-adjustmentValueChanged()

interface

Figure 8.8: The most important AWT listeners and their class structure. Look at the API documentation of the listeners
to find all the available methods to be overriden, this shows you what kind of actions are possible to detect.

java.lang.object

WindowAdapter
(7 methods)

KeyAdapter
(3 methods)

MouseAdapter
(5 methods)

MouseMotionAdapter
(2 methods)

ComponentAdapter
(4 methods)

-
-KeyReleased()
-KeyPressed()
-KeyTyped()

-ComponentHidden()
-ComponentMoved()
-ComponentResized()
-ComponentShown()

-MouseClicked()
-MouseEntered()
-MouseExited()
-MousePressed()

-MouseReleased()

-MouseDragged()
-MouseMoved()

-WindowActivated()
-WindowClosed()
-WindowClosing()

-WindowDeactivated()
-WindowDeIconified()

-WindowIconified()
-WindowOpened()

Figure 8.9: The available adapter interfaces for the AWT listener. These classes ease the writing of listeners by only
overriding the methods you need, you just implement the appropriate event adapter interfaces.

8.5. ADVANCED AWT FEATURES AND GUIS 287

methods of a listener, you just write your own listener by either using the implement keyword for
your class and overriding the method names or you can user inner classes.

/** inner class version */
but.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
// here we could react to the pushed button

}});

/ The implement and o v e r r i d e v e r s i o n of
the Event L i s t e n e r Demons t ra t ion /

import j ava . awt . ;
5 import j ava . awt . even t . ;

publ i c c l a s s B u t t o n L i s t e n e r T e s t implements A c t i o n L i s t e n e r
/ / o v e r r i d i n g the a p p r o p r i a t e method
publ i c void a c t i o n P e r f o r m e d (Ac t ionEven t e)

10 / / here we could r e a c t to the pushed b u t t o n
System . out . p r i n t l n (" You pushed the Button") ;

/ / empty c o n s t r u c t o r
publ i c B u t t o n L i s t e n e r T e s t ()

15
publ i c s t a t i c void main (S t r i n g [] a rgs)

/ / ge t a r e f e r e n c e to the c l a s s
/ / wi th the L i s t e n e r i m p l e m e n t a t i o n
B u t t o n L i s t e n e r T e s t b l t = new B u t t o n L i s t e n e r T e s t () ;

20 / / c r e a t e a window to p o s i t i o n the b u t t o n i n s i d e i t
Frame f = new Frame ("TestButtonListener") ;
f . s e t S i z e (2 0 0 , 2 0 0) ;
/ / c r e a t e the e v e n t source
But ton but = new But ton ("Push Me") ;

25 / / r e g i s t e r the L i s t e n e r
but . a d d A c t i o n L i s t e n e r (b l t) ;
/ / d i s p l a y the window with the b u t t o n
f . add (but) ;
f . show () ;

30 / / Wait fo r a long t ime
try

Thread . s l e e p (1 0 0 0 0 0) ;
catch (I n t e r r u p t e d E x c e p t i o n e)

35

You should always remember not to write time intensive code in listeners, because you interrupt the whole
program and only one listener method is awake at one time. So if you push the button again it will wait
until the first listener method of the pushed button is done. This makes programs not very responsive.

8.5.6 A Complete GUI for the Molecular Dynamics Program

putting it all together ! ????

288 CHAPTER 8. MOLECULAR DYNAMICS

8.5.7 Features not Discussed in this Book
Not mentioned: Cut and Paste (Clipboard), Images, Sound

8.6 A Molecular Dynamics Program
Hier soll das Programm MolDyn eingefuehrt und erlaeutert werden. Typisches Bild zeigen. Ablaufdia-
gramm. Javac mit option fuer grosse jobs! Ansprechen: Anfangsbedingungen der Orte, Anfangsbedingun-
gen der Geschwindigkeiten (no drift!!); usw.

Check der Gesamtenergie, Trajektorien angucken. Sensitivity of initial conditions: Drift in der Geschwindigkeit;
alle Geschwindigkeiten gleich

Nur Listing mit dem code; kein GUI!!!
GUI als Appendix !!!

8.7 The Analysis of the Results
We already mentioned that the aim of a Molecular Dynamics simulation is to investigate macroscopic
properties of a fluid starting from the microscopic dynamics of a system of particles. In this section we
want to sketch some of the basic techniques which allow the extraction of useful information from the raw
data. It is important to keep in mind that the conventional molecular dynamics simulation we described so
far keep the energy constant. In other words, it is based upon the micro canonical (E V N) ensemble.

8.7.1 The Pair Correlation Function
The best way to characterise the structure of a monoatomic fluid is to look at the pair-correlation function
g r . The radial distribution function g r is a measure of the correlations of the positions of the particles,
which are induced by the interactions. Let n r denote the local particle density. This quantity will vary
from point to point, and it will fluctuate around the mean value

n n r
N
V

The local densities at two neighbouring points r1 and r2 will not be completely independent from each
other. In fact, in the time average they show certain correlations. The right measure for these statistical
correlations is the density–density pair correlation function

G r1 r2
n r1 n r2

n2

The microscopic definition of the local density is, of course, a sum of -–functions concentrated around
the position of the particles

n r
N

i 1
- r ri

and the density–density correlation function is accordingly given by

G r1 r2
1
n2

N

i 1

N

j 1
- r1 ri - r2 r j

Introducing r12 r2 r1 and ri j r j ri the above equation can be written in the equivalent form

G r1 r2 G r12
1
n
- r12

V
N2

N

i 1

N

j 1; j i

- r12 ri j

8.7. THE ANALYSIS OF THE RESULTS 289

The function

g r12
V
N2

N

i 1

N

j 1; j i

- r12 ri j

is called the pair correlation function. For an isotropic Lennard–Jones fluid the pair correlation function
does not depend upon the direction of the vector r 12, but only on its absolute value,

g r12 g r
V

4"r2N2

N

i 1

N

j 1;J i

- r12 ri j (8.7)

The pair correlation function g r has a clear physical meaning. ng r is nothing but the mean number of
particles in a spherical shell between r r dr around a given particle. For large values of r the product
ng r converges against the mean particle density n, i.e. we have

g r . 1

For short distances the interaction between the particles is repulsive, so that we must have

g r 0 0

The qualitative behaviour of g r can be seen in Fig. (8.10). After a forbidden region for r ' which is
caused by the fact that particles cannot penetrate each other, there is a sharp maximum which corresponds
to the first shell of neighbouring molecules. This first shell induces a second forbidden region characterised
by a minimum in g r which in turn induces again a maximum characterising a second shell of atoms, and
so on until g r reaches its asymptotic value of 1.

Figure 8.10: Qualitative behaviour of the pair correlation function g r for a Lennard–Jones fluid.

In a simulation the function g r can be determined in the following way. ng r denotes the probability
to find given a particle at r 0 another particle in a distance r. This probability can be estimated from the
relative frequency, with which distances between the particles are found. For the computation of g r for
0 r 3' we divide this length 3' into 100 parts i 1 100 of equal length %r 3' 100. In the
code we will denote this quantity by deltar. For a given configuration of the N particles we count how
many of the pair distances fall in each of the intervals. Algorithmically, we have to calculate the distance
ri j for each pair of particles. For each ri j we determine the number of the corresponding channel in the
histogram according to

n ri j %r 1

where x denotes the nearest integer number smaller than x. The value of g n in the nth channel can then
be increased by 1, and so on. This part of the code may look like

for (int i=1; i< N; i++) {
for (int j=i+1; j < N+1; j++) {
xx = x[i] - x[j];
yy = y[i] - y[j];
zz = z[i] - z[j];
// periodic boundary conditions
if (xx > L/2) xx = xx - L;
if (xx < -L/2) xx = xx + L;
if (yy > L/2) yy = yy - L;
if (yy < -L/2) yy = yy + L;

290 CHAPTER 8. MOLECULAR DYNAMICS

if (zz > L/2) zz = zz - L;
if (zz < -L/2) zz = zz + L;
r2 = xx*xx + yy*yy + zz*zz;
r = Math.sqrt(r2);
n= Mqath.floor(r/deltar) + 1;
if (n < 100) g[n] = g[n] +2
}

}

Note that we have always added 2 on g[n] since we have counted pairs of particles only once. The
above procedure should not be performed at each time step, since during one time step the configurations
do not change significantly. In order to increase the statistics it is better to use statistically independent
configurations. In principle, we should check for the statistical independence. In practice, it is sufficient to
consider a configuration as independent after 10 – 50 molecular dynamics steps.

Having evaluated a sufficient number of statically independent configurations we have to normalise the
function g n . For an ideal gas with ng r n we would find in the i–th spherical shell between i 1 %r
and i%r around one particle for each configuration in the mean

%N i
4 N 1 "

3V
i3 i 1 3 %r3

particles.The actual number of pairs per configuration has to be divided by this number. The corresponding
code, which have to be placed at the end of the simulation, reads

for (int i=1; i< 101; i++){
deltan = Math.Pi*(N-1)/(3*Volume)

* (Math.pow(i,3) - Math.pow(i-1,3)*Math.pow(deltar,3);
g[i] = g[i] / (Nconfig*deltan*(N-1));

}

where Nconfig denotes the number of configurations which have been analysed.
The computation of g n can, of course, be placed in a part of the program where the distances are

computed anyway. However, since we have to compute the function only every 10–50 steps an eventual
redundant calculation of the distances does not affect significantly the performance of the code.

The pair correlation function is of great theoretical and practical importance. The function g r is
directly accessible in neutron and Roentgen scattering experiments. From a theoretical point of view there
is an exact relation between the pair potential U r and g r . This exact relation is the starting point for
several theoretical investigations. E.g., with some simplifying assumptions this relation makes possible the
theoretical calculation of g r .

For a given pair potential U r the canonical configurational partition function of a N particle system
reads

Q
1

N!
V V

exp
1
2

i j i

U ri j kT dr1 drN

The above simply means that the probability to find a certain configuration, say r 1 rN is given by

1
N!Q

exp
1
2

i j i

U ri j kT dr1 drN

Hence, the probability to find a particle at r1 and, at the same time a particle at r2 regardless of the position
of the other particles is given by the two–particle distribution function

n r1 r2
1

N 2 !Q
V V

exp
1
2

i j i

U ri j kT dr3 drN

8.7. THE ANALYSIS OF THE RESULTS 291

It is now possible to demonstrate that the above function is related to the pair correlation function through
the equation

g r g r1 r2
1
n2 n r1 r2

It is this equation which is at the basis of several microscopic theories of fluids.
By far the most important property of the function g r is that it allows the determination of thermody-

namic equilibrium quantities. The internal energy Ui is nothing but the mean potential energy of the total
system,

Ui
1
2

N

i 1

N

j 1 j i

U ri j

Writing

U ri j drU r - r ri j

we obtain the following expression for the internal energy

Ui
1
2

drU r
N

i 1

N

j 1 j i

- r ri j

Inserting the definition (8.7) of the pair correlation function g r in the above equation we get the energy
equation

Ui
N2

2V
V

drU r g r

In a similar way we can deduce from the virial theorem the following equation for the pressure p

p
NkT

V
1

6V

N

i 1

N

j 1 j i

ri j Fi j

which can be expressed with the help of the pair correlation function in the following form

p
NkT

V
n2

6
V

drr
3U r
3r

g r

Figure 8.11: The pressure

8.7.2 Thermodynamic Quantities
From the principle of equipartition of energy it follows that at equilibrium each degree of freedom in the
system has a kinetic energy 1

2 kT . Hence for N particles in a 3d simulation the kinetic energy will be given
by

mi
2

v2
i

3
2

NkT

The above expression is at the basis of the evaluation of the temperature, since the quantity between angular
brackets is easily evaluated as a time average.

Hier fehlen noch einige Bemerkungen.
Def. von Pot. Energie, usw. Diesen Abschnitt vor g(r)!!!!!!

292 CHAPTER 8. MOLECULAR DYNAMICS

Figure 8.12: The temperature as a function of time in Molecular Dynamic simulation of a micro-canonical ensemble.

8.7.3 Dynamical Quantities
Up to now we have considered only static equilibrium properties of the fluid. Time–dependent correlation
functions are important tools for the description of dynamical phenomena. In particular we are interested
in understanding the transport of particles from the equilibrium properties of the fluid. A typical example
is the calculation of the diffusion coefficient from the one particle velocity autocorrelation function C ,

C ,
v , v 0

v2

or from the square of the displacement % t r t r 0 . As we will see shortly the two methods are
equivalent.

In a molecular dynamics simulation the velocity autocorrelation function is computed as a histogram
of the function C , from the velocities of the particles v i tk :

C n%t
1

N v2
1
S

S

s 1

N

i 1
vi ts vi ts n%t

Of course, the time ts have to be chosen such that only statistical independent pieces of the trajectories are
evaluated. Usually it is sufficient to choose %t s 50%t.

An autocorrelation function for a Lennard-Jones fluid can be seen in Fig. (8.13).

Figure 8.13: Plot of the velocity autocorrelation function of a Lennard–Jones fluid.

The figure makes evident that the particles forget rather rapidly their starting velocity. As a conse-
quence of the interaction with the neighbouring atoms the magnitude and the direction of the velocity
changes rapidly and the product v 0 v , decreases to zero. Since each particle is surrounded by a shell of
neighbours after some time there is a reversal of the direction of motion. This explains the negative part
of the autocorrelation function. For higher temperature or lower densities this effect does not occur. For
larger time the memory of the original motions completely lost and the correlation function tends definitely
to zero.

As we mentioned at the beginning of this subsection the velocity autocorrelation function is deeply
related to the diffusive Brownian motion of the atoms in the fluid. In particular we have the simple relation
between the velocity autocorrelation function and the displacement

d2

dt2 % , 2 2 v 0 v , (8.8)

The above relation is easily demonstrated by looking at
d
dt
% , 2 d

dt
r t r 0 2

2v r t r 0

2
t

0

d,v t v ,

Because of the symmetry of v 0 v , for arbitrary times t we conclude that

d
dt
% , 2 2

t

0

d,v , v 0

8.8. MOLECULAR DYNAMICS AT CONSTANT TEMPERATURE 293

The statement (8.8) follows immediately.
We know also that the displacement %2 is related to the diffusion constant by the relation

lim
, .

%2 , , 6D

A very important relation follows now

D
1
3

.

0

d, v 0 v ,

The above equation is a typical example of a Kubo relation. Similar relations hold also for other thermo-
dynamic transport coefficients.

8.8 Molecular Dynamics at Constant Temperature
Up to now the equilbrum properties of the system were fixed by the volume of the simulation cell, by the
initial position of the particles and by the initial velocities. In such a micro canonical ensemble (NV E) it is
easy to determine the constant energy as the sum of the potential and the kinetic energy. As we have seen
in the previous runs of the program MolDyn the temperature and the pressure of the fluid fluctuate around
some mean values, which can be computed as time averages. In many thermodynamic applications we are
interested in having an ensemble at constant temperature, i.e. a canonical ensemble (NVT). It is therefore
the subject of the section to derive a canonical molecular dynamics simulation algorithm.

8.8.1 Velocity Rescaling
The easiest way to keep the temperature fixed to a wished temperature is to rescale the velocities at each
time step. Let us be more precise. We denote by T0 the desired temperature and by K0 the corresponding
kinetic energy. By T and K we denoted the actual temperature, respectively kinetic energy of the N–particle
system. After each time step we rescale the velocities according to the prescription

vi
T0
T

1 2
vi

K0
K

1 2
vi

To put it differently, after each time step -t we correct the velocity by an amount -v i

vi vi -vi

where

-vi
K0
K

1 2
1 vi

K0
K0 -K

1 2
1 vi

In the above expression we have introduced the change in the kinetic energy -K K K 0, -K 1.
Expanding the terms on the squared brackets up to terms of first order in -K we obtain

-vi
K

2K0
vi

Since, the total energy K Epot is constant the change in the kinetic energy corresponds to a change of the
potential energy

-K -Epot

The change in the velocity can therefore be written as

-vi 4Gvi-t

294 CHAPTER 8. MOLECULAR DYNAMICS

where

4G
1

2K0

Epot

-t

The parameter 4G is proportional to the change of the potential energy in a time step. In the next subsection,
we will see that the simple rescaling algorithm introduced here may be given a more profound theoretical
foundation.

8.8.2 The Gaussian Thermostat
In 1929 Gauss formulated a general principle of mechanics for the description of systems with holonom and
nonholonom constraints. The Gaussian principle of least Zwang introduces as a measure of the constraint

Z
k

mk ẍk Fk
2

where, of course,

ẍk Fk

describes the free motion. In the Gaussian notation the quantity Z is called the sum over the squared of the
”lost forces”. The constraint equations of motion are obtained from the variational principle

-Z 0

During the variation of the functional Z we have to keep fixed (i) the state of the system

-xk 0; -ẋk 0

(ii) the (nonholonomic) constraint

fi x1 xN ; ẋ1 ẋN ; i 1 r

and (iii) the forces acting on the system and the masses

-Fk 0; -mk 0

By the method of Lagrangian multipliers we obtain

-Z 2
k

mkẍk Fk

r

i 1
$i
3 fi

3xk
-ẍk 0

Note that we made use of the fact that it follows from

k

3 fi

3xk
-xk

3 fi

3ẋk
-ẋk 0 (8.9)

that

k

3 fi

3ẋ k
-ẍk 0

It follows now from Eq. (8.9) that the equations of motion read

mkẍk Fk

r

i 1
$i
3 fi

3ẋk
(8.10)

8.9. NON–EQUILIBRIUM MOLECULAR DYNAMICS 295

Let us now apply the Gaussian principle to a dynamical system which we want to keep at a fixed
temperature. The constraint is

f ẋ1 ẋN

N

i 1

1
2

miẋ
2
i

3
2

NkT0 0 (8.11)

Since,

3 f
3ẋi

miẋi

the constraint equation of motion follows immediately from the Gaussian principle (Eq. (8.10))

mkẍk Fk $mkẋk (8.12)

In order to determine the Langrange multiplier $ we take the time derivative of the constraint (8.11) and
find

i
miẋi ẍi 0 (8.13)

Multiplying Eq. (8.12) by xk and summing over all particles we get

k

mkẋk ẍk
k

ẋk Fk $
k

mkẋ2
k

Exploiting Eq. (8.13) we obtain the Lagrangian multiplier $

$ k ẋk Fk

k mkẋ2
k

(8.14)

The equations of motion thermalized with the Gaussian ”thermostat” finally read

mkẍk Fk 4Gmkẋk

where the constant factor 4G $. The equivalence of the above thermostat and of the rescaling of the
velocities is now easily recognised. It follows immediately from Eq. (8.14) that

2K4G
dEpot

dt

Thus, if at the beginning of the simulation the desired kinetic energy is K 0 then, the rescaling the velocities
is equivalent to modifying the equations of motion according to the Gaussian principle.

8.9 Non–Equilibrium Molecular Dynamics
So far we have considered systems at equilibrium. Non–equilibrium molecular dynamics (NEMD) is a
generalisation of molecular dynamics which tries to investigate non equilibrium properties of fluids Evans
und Morriss [1984]. A typical non equilibrium situation is plane Couette flow. A simple shear flow in the x
direction with the velocity gradient in the y direction is characterized by the shear rate & which is given by

&
3vx
3y

In other words the velocity gradient is of the form

v r &yn̂x

296 CHAPTER 8. MOLECULAR DYNAMICS

Figure 8.14: The velocity field in a plane Couette flow.

where n̂x is the unit vector in the x–direction. Such a steady uniform shearing motion may be imagined to
be driven by moving boundaries normal to the y axis at y .. The velocity field of a plane Couette flow
is depicted in Fig. (8.14).

A typical question to be answered by a NEMD simulation could be the following one: Does the vis-
cosity 9 of the fluid depend on the shear rate? We will not discuss here the theoretical foundations of this
question. Quantities like the viscosity may be calculated directly by evaluating the corresponding kinetic
expressions or with the help of Green–Kubo formulas. Here, we want only to sketch how a NEMD sim-
ulation may be performed Evans [1987]. A peculiarity of the driven Couette flow is that it is possible to
design an algorithm which uses only the boundary conditions to drive the non–equilibrium state.

Again we consider a cubic simulation cell with periodic boundary conditions. At the origin of the
simulation cube the streaming velocity is chosen to be zero,

u 0 0

It is important to be aware of the fact that in a flow the velocity of a particle, say i, is the sum of two
contributions: a peculiar velocity ci and a streaming velocity

ṙi ci u ri

Of course, the peculiar velocity is periodic, while the streaming velocity is not!
At time t 0, i.e. before the shear flow is switched on, we have the usual periodic boundary condition

ri ri modL

Simple shear flow may be be generated by moving image particles undergoing an ideal Couette flow with
the prescribed shear rate. Let us switch on the flow at time t 0. Then, at a later time t the image cells
above (below) the simulation box have moved in the x direction to the right (left) by a distance &tL modL
where L is the linear dimension of the cubic box (see Fig. (8.15)).

Figure 8.15: Moving periodic images for the simulation of a plane Couette flow.

Formally we have the following situation. Particle i and its two images i and i are located at time t1
at the positions

ri t1

t1

0

dt ci &yin̂x ri &Ln̂xt1

and, respectively,

ri t1 ri &Ln̂xt1

Thus, the method of imaging particles in a system under shear is easily formulated. If particle i passes
through either face of the cube which is parallel to the y–axis, the periodic boundary conditions are un-
changed

rnew
i ri modL

If particle i passes through either face which is parallel to the x axis then it is replaced in the simulation
cube by one of its images i or i . If particle i passes through the top face (y L then its coordinate r i is
replaced by r i,

rnew
i r i modL ri &Ln̂xt1 modL

8.9. NON–EQUILIBRIUM MOLECULAR DYNAMICS 297

Obviously, the streaming velocity at ri is different to that at ri , so we have to correct the velocity accord-
ingly and ṙi becomes

ṙnew
i ṙi ṙi &Ln̂x

Analogously, if the particle i passes through the bottom face of the simulation cube (y 0) then r i is
replaced by ri

rnew
i r i modL ri &Ln̂xt1 modL

and its velocity becomes

dotrnew
i ṙi ṙi &Ln̂x

These are the so–called ”sliding brick” periodic boundary conditions.
There are also alternative methods to simulate Couette flow. These methods are based on the use of

shearing periodic boundary conditions as well as on Non–Newtonian equations of motion . They can be
applied to shear flows with time dependent shear rates. The discussion of these more refined simulation
techniques (SLLOD dynamics) Allen und Tildesley [1987] are beyond the sope of the present book.

With the help of the above NEMD algorithm it is possible to calculate the (Non–Newtonian) viscosity
of the fluid from the Cartesian components of the stress tensor 'µ) pµ) or of the pressure tensure pµ).
The latter is the sum of the kinetic and the potential contributions:

pµ) pkin
µ) ppot

µ)

V pkin
µ)

N

i 1
mici

µci
)

V ppot
µ)

1
2

i j
ri j

µ Fi j
)

In the above equations ri j ri r j is the relative position vector of particles i and j and Fi j is the force
acting between them. The Greek subscripts µ,) assume the values x, y, z and denote the Cartesian compo-
nents of the corresponding vectors. For the flow geometry we consider here the (non–Newtonian) viscosity
9 is obtained through

9
'xy

&
pxy

&

In the simulation the kinetic and the potential contribution to the pressure tensor and to the viscosity can
be computed separately. Usually it is necessary to estimate them as time averages over 10 3 to 106 time
steps. For dense fluids the potential contribution will be the dominant terms, whereas for dilute gases the
kinetic contribution will be the more important. It is interesting to look at the shear–rate dependence of
the viscosity. Four regimes can be identified. In the first Newtonian regime at low shear rates (& 0 1 in
Lennard–Jones units) the viscosity is independent from the shear rate. For 0 2& 2 a week shear thinning
is observed. This means that the viscosity decreases for increasing shear rate. At larger shear rates for
2 & 20 a strong shear thinning is observed. And finally for even larger shear rates & 20 shear
thickening is observed, i.e., the viscosity increases with increasing shear rate Hess [1996].

Code der Simulation: Nur periodic boundary conditions; Trajektorien anschauen fuer grosse Scher-
raten; g(r); usw.

Appendix: The GUI!!!

298 CHAPTER 8. MOLECULAR DYNAMICS

Bibliography

Alder, B. J. und Wainwright, T. E. Phase transitions for a Hard Sphere System. J. Chem. Phys, 27:1208,
1957.

Alder, B. J. und Wainwright, T. E. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys,
31:459, 1959.

Allen, M. P. und Tildesley, D. J. Computer Simulation of Liquids. Clarendon, Oxford, 1987.

Evans, D. J. xxxxx. In G. Ciccotti, D. Frenkel und I. R. McDonald, Herausgeber, Molecular Dynamics
Simulation in Statistical Mechanical Systems, Proc. of Intern. School of Physics ”Enrico Fermi”. North
Holland, 1987.

Evans, Denis J. und Morriss, G. P. Non–Newtonian Molecular Dynamics. Computer Physics Reports,
1:297–343, 1984.

Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, Engle-
wood Cliffs, NJ, 1971.

Hess, Sigfried. Constraints in Molecular Dynamics, Nonequilibrium Processes in Fluids via Computer
Simulation. In K. H. Hoffman und M. Schreiber, Herausgeber, Computational Physics: Selected Meth-
ods, Simple Exercises, Serious Applications, Seiten 268–293. Springer, Berlin, 1996.

Rahman, A. Correlations in the Motion of Atoms of liquid Argon. Phys. Rev. A, 136:405, 1964.

Verlet, L. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard–Jones
Molecules. Phys. Rev., 159:98, 1967.

Verlet, L. Computer Experiments on Classical Fluids. II. Equlibrium Correlation Functions. Phys. Rev.,
165:201, 1968.

Zukowski, John. Java AWT Reference. The Java Series. O’Reilly, 1997.

299

300 BIBLIOGRAPHY

Chapter 9

Monte-Carlo Methods

9.1 The M(RT)2 Algorithm
In a certain sense this chapter is the logical continuation of Chap. xx, in which we have learned how to
sample random variables according to a prescribed distribution. We want to discuss an advanced sampling
technique first described in a paper by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, which we will
name the M(RT)2–algorithm Metropolis et al. [1953]. In the literature the same algorithms often referred to
simply as the Metropolis algorithm. The method bears some relation to the rejection techniques: tentative
values that are proposed explicitly may be accepted or rejected.

The M(RT)2–algorithm is often used as synonym for Monte Carlo algorithms. This stems from the
fact that it is very simple and, at the same time, very powerful. It can be used to sample essentially any
density function. The only disadvantage of the method is that the sampling is correct only asymptotically
and that successive sampled variables are often strongly correlated. Besides the original paper there are
many excellent introductions to the Monte Carlo algorithm Binder [1997]; Binder und Heermann [1988].
Here, we will follow a more general approach Kalos und Whitlock [1986]

It is well–known from statistical physics that the equilibrium properties are essentially independent
from the kinetics of the system. We consider a system described by a point X in some phase space /.
The time evolution of the system is governed by a stochastic transitions. Thus the kinetics of the system is
defined in terms of a conditional transition probability density function W X Y , describing the probability
for a system known to be in state Y to jump in state near X . The quantity W X Y models the physical
process.

A system evolves towards equilibrium and stays there if on average the system is likely to move from
Y into X as to move exactly in the reverse direction. If the probability density to observe the system in
equilibrium is Peq X then the kinetics must satisfy

W X Y Peq Y W Y X Peq X

Of course, W X Y Peq Y is the probability for moving from Y to X , since it is the product of the probability
of being in Y times the conditional probability to move from Y to X . The above relation is called detailed
balance .

In statistical physics, a model of the system would be defined in terms of W X Y . A typical task
would be the determination of the equilibrium distribution. It is important to realize that the aim of the
M(RT)2 algorithm is the opposite! The typical task of a MC simulation, as we will see in the applications
discussed below, is to calculate averages of some quantities for a given ensemble, i.e., for the canonical
one. Formulated more abstractly, the task of the M(RT) 2 algorithm is to find a convenient kinetics, i.e. a
W X Y , that will equilibrate the system towards a given Peq X . In this way we are then able to compute
in a simple way ensemble averages. The basic idea of the M(RT)2 algorithm is to write W X Y in the form

W X Y A X Y T X Y

301

302 CHAPTER 9. MONTE-CARLO METHODS

where T X Y is a distribution which proposes the transition from Y to X . The T X Y are normalised
such that

dXT X Y 1

By comparison of Peq X with Peq Y and taking into account T , the system is either moved to X (move
accepted) or the system stays at Y (move rejected). Of course, the probability of acceptance A X Y has to
be calculated so that the detailed balance condition is satisfied. In other words:

A X Y T X Y Peq Y A Y X T Y X Peq X

It is helpful to define at this point the quantities

q X Y
T Y X Peq X
T X Y Peq Y

0

This quantity plays a central role in the calculation of the probabilities to accept or reject a move. A
possibility to define the acceptance probability A is namely

A X Y min 1 q X Y

For a given Peq X , when X is assumed to be some vector in Rn, the M(RT)2 algorithm establishes a random
walk. At each step in the random walk there is a transition density T X Y for a move from Y to X . Let
us now denote the steps of this random walk by X1, X2, XN . Each of the Xi is a random variable with
a corresponding probability density :1, , :N . As we will demonstrate, by a correct choice of A, the
asymptotic distribution of X will be Peq X .

We are now in the position to describe the algorithm. We assume that at the nth step of the random
walk the value of X is Xn.

(i) Sample a possible next value for X , say Xn 1 from T Xn 1 X .
(ii) Compute the probability for accepting Xn 1. If q Xn 1 X 1 then A Xn 1 X 1 and Xn 1 is

accepted. If q Xn 1 X 1, then A Xn 1 X q Xn 1 X . Thus, with probability A Xn 1 X we accept
the move Xn 1 Xn 1, otherwise we reject the move and Xn 1 Xn.

Having defined the algorithm let us now look at the asymptotic properties of the random walk. Let
:n X be the distribution of the values Xn. The distribution :n 1 is the sum of two contributions. The first
one is the probability of moving in the vicinity of dX of X when we successfully move from any point Y :

dYA X Y T X Y :n Y

The second one is the probability not to move away from X , i.e., that a move out of X is not accepted:

:n X dY 1 A Y X T Y X

Summing up the two contributions we find

:n 1 X dYA X Y T X Y :n Y

:n X dY 1 A Y X T Y X (9.1)

which is a recursion relation to the determination of :n. It can be proven that the dynamical system gener-
ated by the M(RT)2 algorithm is ergodic: the random walk starting at X may return in the neighbourhood
of X but does not do so periodically. According to a theorem by Feller, if the random walk defines a system
that is ergodic, then there exists an asymptotic probability density function and is unique if, Peq X is a
fixed point of the above recursion

:n X Peq X :n 1 X Peq X

9.2. THE ISING MODEL 303

If we now set :n X Peq into Eq. (9.1) we obtain

:n 1 X dYA X Y T X Y Peq Y

dY 1 A Y X T Y X Peq X

Because of the detailed balance condition we are left with

:n 1 X T Y X Peq X

and because of the normalisation of the conditional transition probability T we finally get

:n 1 X Peq X

Thus, we have shown that Peq X is the asymptotic distribution of the random walk. From the practical
point of view, this means that we have always to throw away L steps of the random walk until the steps
are sampled from Peq X . L may be difficult to estimate in advance. However it is clear that it may be
minimised by choosing :1 X as close as possible to Peq X .

In a Monte Carlo simulation we want to evaluate quantities of the form

G
dXg X Peq X

dXPeq X

For example, in a Monte Carlo simulation of a many body system G might be the energy. In view of the
above remark, the averaging in the MC simulation begins only after the initial L steps have been thrown
away:

G
L N 1

n L

g Xn

N

It is also important to keep in mind that the successive Xn are not independent and that there may be
correlations. Thus the calculated variance of G will be larger than if the steps were independent. We will
return to this point later.

A last remark. The form for the probability of accepting a move is not restricted to the one given above.
Another relation which may be used is

A X Y
q X Y

1 q X Y

9.2 The Ising Model
A typical application of the M(RT)2–algorithm in statistical physics is the numerical investigation of the
order–disorder transitions. The Ising model is the easiest model for interacting microscopic degrees of
freedom. One considers a lattice composed of two different types of objects, say A and B. The objects
interact only with their nearest neighbours. The interaction between object A and object B is V AB. The
qualitative behaviour of the system at temperature T 0 is easily investigated. We consider two cases:

(i) If VAB VAA VBB 2 then the configuration which is energetically favoured is one in which objects
A all neighbour one another and objects B all neighbour one another. The lattice is split into domains, one
containing only objects A, the other containing only objects B.

(ii) If VAB VAA VBB 2, the configuration in which objects A and B alternate will be energetically
favoured.

Obviously the above configurations both belong to ordered states. Raising the temperature of the sys-
tem, the thermal energy kT will tend to randomise the positions of A and B, which at some temperature
of the system will behave completely disordered. The mathematical model of such systems is the Ising

304 CHAPTER 9. MONTE-CARLO METHODS

model. It was originally proposed as a model of ferromagnetism . It has been also applied successfully to
lattice gases , binary alloys, melting of DNA, econophysics . The Ising model can be solved analytically in
1 and 2 dimensions. No analytical solution in 3 dimensions is known so far. In one dimension it does not
exhibit a phase transition, but in two and three it does.

We now want to apply the M(RT)2 algorithm to the Ising model. The Ising model is a simple model
of magnetism and is one of the most studied models in physics. It is known from experiment that the
magnetisation of a permanent magnet diminishes in strength as the magnet is heated, i.e., temperature is
increased. Above a certain temperature, called the Curie point , the magnetisation disappears completely.
The Ising model is a simple physical model to explain this phenomenon from a microscopic point of view.
Historically, the model was first proposed by Lenz in 1920 and it was investigated by his student Ernst
IsingIsing [1925], and usually bears his name in the literature. The Ising model is the standard model
to study phase transitions. As we will see analytical solutions exist only in 1 and 2 dimensions. In 3
dimensions it has to be studied numerically. The fact that it can be easily simulated is probably one of the
reasons of its great popularity. The history of the Ising model has been reviewed in Ref. Brush [1967].

9.2.1 The Model
The microscopic Ising model is based upon th e observation that the atoms of a magnetic substance are
themselves tiny small magnets. The spontaneous magnetisation in the bulk of the substance is explained
as the result of the alignment of the ”atomic” magnets, usually called ”spins”, as a consequence of their
mutual interaction. The assumptions at the basis of the Ising model are the following ones: (1) the spins are
arranged on a regular lattice; (2) each spin can point only in one of two directions, ”up” and ”down”; (3)
there exists an interaction energy J between two neighbouring spins which point in the same direction,
and an energy J if they point in opposite directions. It is clear that at temperature T 0 for positive J, the
Ising model will be in a configuration (of lowest energy) with all spins aligned. This alignment persist, at
least partially, up to some nonzero but finite temperature, the Curie point. We are now in the position to
specify mathematically the Ising model.

We consider a solid of N identical atoms arranged on a regular lattice. Each atom has a net electron
spin S and an associated intrinsic magnetic moment µ

µ gµ0S

where µ0 is the Bohr magneton and g is a factor of order O 1 . In the presence of an external magnetic
field H0 in z–direction the Hamiltonian describing the interaction between the magnetic field and the atoms
reads

H gµ0

N

j 1
S j H0 gµ0

N

j 1
S jzH0

where the index j runs over all atoms. Of course, atoms interact also with neighbouring atoms. The mag-
netic dipole–dipole interaction is generally to small to explain ferromagnetism. The dominant interaction is
the exchange interaction between neighbouring spins, which is a direct consequence of the Pauli exclusion
principle . Sloppy speaking, two electrons with parallel spins in neighbouring atoms can not come arbitrar-
ily near since they occupy the same state. In the opposite case, two electrons with anti–parallel spins are
in different states, and the Pauli principle does not forbid their approaching. This electrostatic interaction
between neighbouring atoms depends on the relative orientation of the spins. The exchange interaction
between two atoms i and j can be written as

Hi j JSiS j

where J measures the strength of the interaction. If J 0, the interaction energy is lower if the spins are
parallel. The state of minimal energy is one which favours configurations in which all the spins are parallel.
This is the situation leading to ferromagnetism. If J 0 it is energetically favourable for the spins to be
antiparallel.

9.2. THE ISING MODEL 305

Since J is a function of the overlapping of the electron wave functions, it is a function of the distance
between the atoms and decreases rapidly. It is therefore safe to assume that atoms interact only with nearest
neighbours and to regard consequently J as constant.

According to the assumption of the Ising model, we consider only components of the spin in the z–
direction and we write the exchange interaction as

Hi j Js jsk

In the above formula we have adopted the notation s i 1, where si is the z–component of the spin at
lattice site i. si 1 is an ”up” spin, and si 1 is a ”down” spin. The total Hamiltonian H of the
exchange interaction reads

H J nn i j s jsk

where nn() denotes a sum only over nearest neighbours. Finally, the Ising Hamiltonian is

H J
nn i j

sis j H0
i

si

where we have absorbed the factors µ0 and g into H0.
The problem is now to calculate the thermodynamic functions of the system as, e.g., the mean magnetic

moment M̄ as a function of the temperature and of the external magnetic field. According to the principles
of statistical mechanics, the thermodynamics of the system can be derived from the partition function

Z configurationsexp H kT

The summation has to be taken over all possible spin configurations. Mathematically, the point is to find
a closed expression for Z. If there is a Curie point it will manifest itself in this expression as a point of
non-analyticity in the variable T .

In 1925 Ising solved this problem for the 1 dimensional case and found no Curie point. The existence
of a spontaneous magnetisation in 2 and 3 dimensions was established by Peierls in 1936, and in 1944
Onsager published the exact solution for the 2 dimensional case (H 0 0) Onsager [1944]. The analytical
solution of the Ising model in 3 dimensions and o f the 2 dimensional Ising model with external field remain
unknown. The thermodynamic properties can be studied by computer simulation as we will see shortly.
We will not present here the exact solution of the ising model in 1 and 2 dimensions and refer the reader
to the original literature and to excellent textbooks. Here we prefer, in order to review some of the basic
features of the physics of phase transitions to recall the mean field approach of Pierre Weiss.

9.2.2 The Mean Field Theory
In order to understand better the physics behind the Ising model, we want to treat it in the most simple
approximation showing phase transitions and some of their characteristic features. The basic idea of mean
field approximations is the following one: Pick up a specific spin, say j. The interaction of this spin with
the external magnetic field and the internal field due to the other spins in the lattice is described by the
Hamiltonian

Hj gµ0H0s j Js j

N

k nn j

sk

In order to simplify the second term i the above equation we assume that each spin interacts with the same
internal field due to the other spins in the lattice. Thus, we replace the sum over all neigbors by the mean
value

J
N

k nn j

sk gµ0Hm Jqm

306 CHAPTER 9. MONTE-CARLO METHODS

where Hm is a parameter having the dimensions of the magnetic field. m denotes the mean magnetisation
per spin and q is the number of nearest neighbours. The mean field Hamiltonian reads

Hj gµ0H0s j 2Js jqm gµ0H0 2Jqm s j

We have reduced the original N–spin Hamiltonian to an effective 1 spin Hamiltonian. Accordingly, the
partition function for 1 spin reads

Z1
s1 1

exp *s1 H1 2cosh* qJm H

We know from statistical mechanics, that the free energy per spin is given by

f
1
*

lnZ1 kT ln 2cosh* qJm H

So that the mean magneization per spin is

m
3 f
3H

tanh* qJm H (9.2)

Evidently the above equation is a self–consistent equation for m. The solution to this equation can be found
at best graphically. The correct value of m is the crossing point of the plots of the two sides of the equation.

Figure 9.1: The graphical solution of Eq. (9.2).

Let us look at the case H 0. Obviously, m 0 is a solution and it corresponds to a disordered
paramagnetic state. However, it is more interesting to look at the possibility of spontaneous magnetisation
and to this end we set H 0. . The slope of the function tanh *qJm varies monotonically from the initial
value *qJ to zero. Since the slope of the function m is unity a nonzero solution to Eq. (9.2) exists for
*qJ 1 or kT qJ. The critical temperature Tc separating the m 0 solution from the m 0 solution is
given by

kTc Jq

For H 0 the magnetisation is small near T Tc, and we can expand the tanh *qJm term in Eq. (9.2) to
obtain

m *qJm
1
3
*qJm 3 (9.3)

Again we find the disordered paramagnetic state m 0 as a solution to Eq. (9.3). The second solution is

m
3

*qJ 3 2 *qJ 1 1 2 (9.4)

corresponding to the ordered ferromagnetic state. By substituting the two solutions for m into the expres-
sion for the mean field mean energy at H 0 it is easy to verify, that the m 0 solution provides a lower
free energy for T Tc and conversely the m 0 solution at T Tc. We can now set kTc qJ into the
expression (9.4) and we find for T near Tc that the magnitization vanishes as

m
Tc T

Tc

1 2

Another quantity of interest near Tc is the zero–field susceptibility (per spin) !

! lim
H 0

3m
3H

9.2. THE ISING MODEL 307

With the help of Eq. (9.2) we obtain

!
* 1 tanh2*qJm

1 *qJ 1 tanh2 *qJm

For T near Tc we find

!
1

T Tc

which is the famous Curie–Weiss law.
Let us consider shortly the case H 0. Expanding Eq. (9.2) to third order in H with * * c 1 qJ

the magnetisation at Tc is found to be

m m *cH
1
3

m *cH 3

If m and H are so small that

*cH m

then

0 betacH
1
3

m3

and hence

m 3*cH 1 3

Further quantities of interest are the mean energy and the heat capacity. The mean energy per spin is
simple the average value of the interaction energy

e
1
2

qJm2 (9.5)

For T Tc we know that the magnetisation vanishes, m 0, and hence the mean energy as well as the heat
capacity vanish for all temperatures T Tc. For T Tc the mean energy is found by inserting (9.3) into
(9.5)

e
1
2

qJ tanh * qJm H 2

The specific heat C for T Tc is now easily evaluated with the help of the equation

C
3 e
3T

For T Tc from below C 3k 2. Hence mean field theory predicts a jump in the specific heat at T Tc.
Remarkably mean field theory predicts a critical point. The critical point is characterized by an order

parameter. Here it is the magnetisation. Unfortunately, the theory is too simple. For example it predicts a
critical temperature which does not depend upon the dimension of the system but only on the number of
nearest neighbours. The prediction of a phase transition for the 1d Ising model is qualitatively incorrect.
The mean field prediction for Tc in a 2d square lattice is kTc Jmq 4 whereas the exact result is

kTc
J

2
ln 1 2

2 269

However, mean field theory predicts correctly that many physical quantities exhibit a power law behaviour
near the critical point

m T Tc T * T Tc

! T T Tc
&

m T Tc H1 -

308 CHAPTER 9. MONTE-CARLO METHODS

Table 9.1 Comparison of the critical exponents for the 2 and 3 dimensional Ising model with mean fied
theory.

Quantity Exponent d=2 (exact) d=3 (sim) MFT
specific heat + 0 (log) 0.113 0 (jump)
order parameter * 1/8 0.324 1/2
susceptibility & 7/4 1.238 1
M H 1 - - 15 4.82 3
Correlation length) 1 0.629(4) 1/2
c r at T Tc 9 1/4 0.031(5) 0

The quantities *, & and - are called critical exponents . A comparison of the mean field exponents with the
analytical values in 2 dimensions and simulation results in 3 dimensions are found in table 9.1.

Additional information about the phase transition can be obtained from the behaviour of the spin cor-
relation function ci j

ci j sis j m2

where we have assumed that si s j m. It can be shown, that the spin correlation function is related
to the susceptibility

!
1

NkT

N

i j 1
sis j si s j

1
NkT

N

i j 1
ci j

1
kT

N

j 2
c1 j

since all lattice sites are equivalent. Near Tc the susceptibility ! diverges, and hence the number of corre-
lated spins must increase as Tc T Tc 0. In fact the neighbourhood of the critical point is characterized
by long–range correlations. To characterize these correlations we write c i j as

c r
exp r 5

rd 2 9

r is the distance between the two spins. 5 is called the correlation length and increases as T Tc, as

5
T Tc

Tc

)

At T Tc 5 is infinite and c r decays as a power law characterized by the critical exponent)

c r
1

rd 2 9

As a last comment let us remark that the critical exponents +, *, &, -, and 9 are not independent, but obey
some scaling relations. Gould et al. [1995]

9.3 The Monte Carlo Simulation
In the preceeding section we have convinced ourselves of the necessity of an efficient numerical algorithm
for the Ising model. We will now apply the M(RT)2 algorithm to the Ising model in order to compute

9.3. THE MONTE CARLO SIMULATION 309

numerically the expectation values we are interested in, e.g., the mean energy and th mean magnetisation
. The necessity of a good algorithm based on the idea of importance sampling is made evident by the
huge number of possible configurations. Consider for example the the 2 dimensional Ising model on a
50 50 square lattice. The number of terms to be summed up in order to obtain the state function is
250 50 22500 10753! It is therefore impossible to sum up equally distributed random configurations.

Of course, we will have to sample configurations which are distributed according to the Boltzmann
distribution, i.e.,

Peq 'i exp *H 'i

In order to extend the idea of the random walk in the space of spin configurations we have to construct the
conditional transition probability W ' i 'i according to the prescription of the M(RT)2 algorithm

W
'i

W
'i

W
'i

W

Of course, W will have to satisfy the detailed balance condition

W 'i 'i Peq 'i W 'i 'i Peq 'i

The Markov chain, i.e., the random walk. is realized through local updates of single spins. Formally, we
can write for the transition probability for flipping one spin and thus for ”jumping” from the configuration
X s+ to the next configuration X s+

T 'i 'i

N

i j 1
fi j- 'i j 'i j

where - 'i j 'i j describes the flipping of spin 'i j: 'i j 'i j. Of course fi j is constant and fi j 1 N2.
Since T is essentially constant T X Y T Y X and the quantity q X Y , which as w remember enters
the expression for the acceptance of the move is simply given by the ratios of the Peq

q X X
Peq X
Peq x

Denoting by E X and by E X the the energy of the configuration before and after the spin flip we have

q X X exp * E X E X

The new configuration can be accepted with probability

A X X min 1 q X X
exp * E X E X ; E X E X
1; E X E X

The simplicity of the M(RT)2 algorithm is made evident by formulating it locally. It is clear from the
expression of q that we need only know the energy difference E X E X . Assume that the spin ') has
been flipped ') ') in changing the configuration from X to X . The index) denotes a pair of indices
i j. So we can write for the energy difference

%E) E s) E s)

where all other n 1 spins remain unchanged. We consider first the case of vanishing external magnetic
field H 0 . We have

E s) Js)u)
E s) Js)u)

310 CHAPTER 9. MONTE-CARLO METHODS

where

u)
nn)

snu

The terms indicated by do not contain s) and are equal. Thus the energy difference can be written as

%E) E s) E s) 2Js)u)

Hence we can write q as

q s) s) exp *Js)u)

IN two dimensions we have of course 4 nearest neighbours and U) can assume only the values 0, 2, 4.
Hence s)u) and consequently q can assume only 10 different values, which, in principle, can be computed
in advance.

Summarising the M(RT)2 algorithm schematically reads:
1. Choose a spin s).
2. Calculate u), %E) 2Js)u), and 9 *%E).
3. If 9 0, then flip the spin s) s); go back to 1..
4. If 9 0, choose a random number r equally distributed in 0 1 . If r exp 9 flip the spin

s) s), else do not flip the spin; go back to 1.
We have seen that A can also be chosen to be

A Y X
q Y X

1 q Y X

For the Ising model this means

A Y X
exp *%E

1 exp *%E
1 exp *%E 1

1
2

1 s) tanh *Ju)

This is the so–called Glauber version of the M(RT)2 algorithm, which explicitly reads:
1. Choose a spin s).
2. Calculate u), %E) 2Js)u), and 9 *%E).
3. Choose a random number r equally distributed in 0 1 . If

r
1

1 exp 9

perform the flip s) s), otherwise s) is unchanged; go back to 1.
In principle, the choice of the spin s) in step 1. of both versions of the algorithm should occur at

random. In practice, in order to save CPU time, one sweeps across the lattice.

9.3.1 The Code
Listing und Beschreibung.

Figure 9.2: Configurations of the two dimensional Ising model on a 100 100 lattice at * *c
0 5 0 7 0 9 0 95 0 98. Notice the growth of correlations from hight temperatures to the critical region.

9.4. DATA ANALYSIS 311

Figure 9.3: Magnetisation as a function of the reduced temperature kT 2J for L 40, L 50 and L 100.

Figure 9.4: Magnetic susceptibility.

9.4 Data Analysis
This section is devoted to the analysis of the data generated with the help of the Monte Carlo simulation
of the Ising model. The thermal quantities of interest are, as we know, the mea energy E and the heat
capacity C. It is clear that we will calculate the mean energy in the simulation as the average of the energy
of each configuration of the lattice, i.e.,

E J
nn i j

sis j H0
i

si

A straightforward way to calculate the heat capacity at constant external magnetic field is from its definition
C 3 E 3T . However, it is better to determine C from the statistical fluctuations of the energy in the
canonical ensemble. To recall this formula we write for the heat capacity at constant volume

CV
3 E
3T

1
kT 2

3 E
3*

From the definition of E

E
1
Z

M

s 1
Es exp *Es

where the index s runs over all M accessible micro states of the system, we have

E
3
3*

lnZ

Hence, we find

3 E
3*

1
Z2

3Z
3* s

Es exp *Es
1
Z s

E2
s exp *Es

which finally can be written in the desired form for the specific heat

C
1

kT 2 E2 E 2

Other quantities of interest are the mean magnetisation M and the zero field magnetic susceptibility
!. The former is calculated from its definition

M
i 1

Nsi

and the latter from the fluctuations of the magnetisation

!
1

kT
M2 M 2

Figure 9.5: The energy as a function of T.

312 CHAPTER 9. MONTE-CARLO METHODS

Figure 9.6: The specific heat as a function of T.

9.4.1 Estimation of Errors
The Monte Carlo as well as the Molecular Dynamics simulation of physical systems produce raw data, e.g.
the energy or the magnetisation of the system, in form of a finite time series of correlated data. Typically,
stationary states, i.e. the equilibrium state, are investigated and the first step in the data analysis is the
estimation of the mean values which are computed as time averages. Since the times is finite the mean
values do fluctuate: they are random variables as well. Performing the simulation another time will lead
to different estimate. So the second step of the data analysis is the estimation of the variance of finite
time averages. We now discuss in some detail the analysis of the data Flyvbjerg und Petersen [1989];
H.Flyvbjerg [1998].

Preliminary Considerations

Let us consider a Monte Carlo simulation in which some quantity, say x is computed. The simulation
is performed over n steps and x1, x2, , xn denote the result of the n consecutive measurements of the
fluctuating quantity x. In order to be precise we denote by the expectation value with respect to the
exact, in general unknown, probability distribution p x

x dxxp x

By ¯ we denote the average over the set x1 x2 xn,

x̄
1
n

n

i 1
xi

which is the quantity we compute in practice. As is usual we assume ergodicity : the ensemble average x
is equal to the ”time” average limn . x̄. As we know already, we estimate the expectation value µ x by
the average value

m x̄
1
n

n

i 1
xi (9.6)

What we now need is the estimator for the variance of m,

'2 m m2 m 2 (9.7)

Inserting, Eq. (9.6) into Eq. (9.7) we find that

'2 m
1
n2

n

i j
xix j xi x j

1
n2

n

i j
&i j (9.8)

where we have introduced the correlation function & i j xix j xi x j . Using the invariance of the
correlation function under time translations we define

&t &i j; t i j

9.4. DATA ANALYSIS 313

and rewrite Eq. (9.8) in the form

'2 m
1
n

&0 2
n 1

t 1
1

t
n

&t (9.9)

The above equation is often used as an estimate for '2 m inserting an estimate for &t at the appropriate
place. Doing so requires some care since the most obvious estimator c t for &t

ct
1

n t

n t

k 1
xk x̄ xk t x̄ (9.10)

is a biased estimator. It is easy to check that the expectation value of ct is not &t , but

ct &t '2 m %t (9.11)

where %t depends on the correlation functions & i j . Although it is possible to construct with the help of
some approximations of the above expression unbiased estimators based on the correlation functions we
prefer to describe here another way for the estimation of ' 2 m .

The ”Blocking” Method

The method we want to describe now is to be preferred from a computational point of view and because
it gives information about the quality of the estimate of ' 2 m . The method is based on the repeated
”blocking” of data and works in the following way.

The data x1 xn are transformed into a new data set x1 xn which is half as large

xi
1
2

x2i 1 x2i (9.12)

n
n
2

(9.13)

For the new ”blocked” data set we define a new average value as

m x̄
n

i 1
xi

Obviously, the mean averages m and m for the original and for the ”blocked” data sets are equal

m m

Accordingly, we define ”blocked” correlation functions & i j and &t for the new primed data set

&i j xix j xi x j

It is easy to check that '2 m is invariant under the blocking transformation. To this end we calculate first

&t
&0 2 &1 2 for t 0
1
4&2t 1

1
2 &2t

1
4 &2t 1 for t 0 (9.14)

and then

'2 m
1

n 2
i j 1

n & i j '2 m

The invariance of the blocking transformation implies that no information is lost in considering the blocked
data set. From Eq. (9.9) we know that

'2 m
&0
n

314 CHAPTER 9. MONTE-CARLO METHODS

and from (9.13) and (9.14) it follows that & 0 n increases every time the ”blocking” transformation is ap-
plied, unless &1 0. In the latter case &0 n is invariant. The idea of the blocking method is very simple.
If the computed '2 m is not the same as the original ' m we have to apply again the blocking trans-
formation to the data set until the estimated '2 m is approximately the same as that calculated from the
previous data set.

It is easy to show that

&t
n t 0 1 2 -t 0 t 0 1 2

is a fixed point of the linear blocking transformation. At the fixed point & t 0 for t 0 and hence

'2 m &0 n

In order to estimate '2 m we have to replace &0 in the above expression by its estimate c0 which is defined
in (9.11). Because of Eq. (9.11) and of % 0 0 solving for '2 m we obtain

'2 m
c0

n 1

Of course, the identity is satisfied at the fixed point.
In practice one proceeds as follows. Starting from the original data set x 1 xn one estimates '2 m

using ct as an estimate for &t , i.e. one calculates

c0
n 1

as an estimate for

c0
n 1

'2 m

Then, the blocking transformation is applied to the data set and

c0
n 1

is computed. The process is repeated until n 2. The sequence of values obtained for c0 n 1 will
increase until it remains constant within the fluctuations. This constant value is the estimate for ' 2 m .

Figure 9.7: Estimates for '2 m obtained with the blocking method.

9.4.2 Finite Size Effects
WICHTIG!!!!! Es gibt eine exakte Lsg. fuer das diskrete LxL 2D Ising modell mit periodischen randbe-
dingungen. Dies koennte man in den Figuren plotten. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185
(1969) 832 WICHTIG !!!!!!!!

Another point which he have to consider in Monte Carlo simulations of phase transitions is that the
correlation length 5 can not diverge near the critical point. similarly, also the divergencies in other quantities
are rounded and shifted. This fact is illustrated in Fig. (9.4.2) where we plot the specific heat of the 2d
Ising model as a function of * for various lattice sizes.

Because of the finiteness of the system near Tc the role of the correlation length 5 is taken over by the
linear size of the system

5 T L T Tc
)

9.5. THE CLUSTER ALGORITHM 315

Figure 9.8: Finite size scaling behaviour of the two dimensional Ising model on L L square lattices. (Exact solutions
of Ferdinand and Fisher??).

Hence we can write

T Tc L 1)

and we see that near Tc the usual scaling laws are replaced by

m T Tc T * L *)

C T T Tc
+ L+)

! T T Tc
& L&)

In order to estimate the critical exponents one usually fits the above finite–size scaling laws.

9.5 The Cluster Algorithm
The simulations of the Ising model have shown that as the temperature is decreased, in the absence of
an external field, clusters of spins of both signs tend to expand as we approach the transition. In this
situation the generation of new configuration with the help of local algorithms is a difficult task since the
system is almost trapped in a subset of phase space. To overcome this difficulty cluster algorithms have
been proposed Swendsen und Wang [1987]. The basic idea is to rearrange large blocks of spins instead
of individual spins. We will describe here the Swendsen–Wang algorithm and will follow the presentation
found in Schnakenberg [1995].

The prescription for the cluster update algorithms is motivated by an appropriate equivalent represen-
tation of the state function of the Ising model. As we know

Z
'i

exp *
nn i j

'i' j

Using the fact that the product ' i' j of two Ising spins can assume only the two values 1, we find that

exp *'i' j exp * 1 p p-'i' j

where we have introduced p 1 exp 2* . Thus above sum can be rewritten as Kasteleyn und Fortuin
[1969]; Fortuin und Kasteleyn [1972]

Z
'i nn i j

exp * 1 p p-'i' j

With the help of the trivial identity

a b
1

n 0
a-n 0 b-n 1

we can write

Z
'i ni j nn i j

exp * 1 p -ni j 0 p-'i' j-ni j 1

where we have introduced the bond variable n i j which can take the values ni j 0 or 1, corresponding to
deleted or active bonds. The idea of the cluster algorithm consists in identifying clusters of spins with
parallel spins that are connected by active bonds and by updating all the spins in cluster at one time.

316 CHAPTER 9. MONTE-CARLO METHODS

As we just mentioned each spin configuration contains connected domains of parallel spins, i.e., nearest
neighbour spins show in the same direction. These domains play a central role in the Swendsen–Wang
algorithm:

(i) The starting point is a configuration, say K. For each nearest neighbour pair within a domain of
parallel spins in K we establish with probability

pb 1 exp 2*J

a bond. A cluster is a region of the lattice where all lattice sites are connected by bonds. In this way the
spin configuration is converted into a cluster configuration.

(ii) Each cluster is assigned a new spin value, s 1 with probability 1/2 or s 1 with probability 1/2.
(iii) The new configuration K is obtained by reassigning the value of the spins at each site in a cluster.

All sites in a given cluster assume the same spin assigned in 2. to the given cluster.
It is clear that if the original configuration contains sizeable cluster the new configuration K will be

very different from it. With the help of a local algorithm the new configuration would have been obtained
only after a very long time. We now have to check that the above algorithm leads to the correct simulation
of the equilibrium properties.

To this end we consider the transitions between two spin configurations K and K over a cluster config-
uration C. It follows from the algorithm that if the transition K K is possible also the transition K K
is allowed, and hence

K C K

Since step (i) in the above algorithm and step (ii) and (iii) are independent we have

W K K W K C W C K (9.15)
W K K W K C W C K

The spins s 1 are assigned with equal probability to the clusters, so it is obvious that we have

W K C W K C

and hence it follows from Eq. (9.15)

W K K
W K K

W C K
W C K

Let us now r be the number of nearest neighbours pairs, which do have in K parallel spins, but which in C
belong in different clusters. In the step 1. K C bond have not been established between these pairs with
the probability 1 pb. Correspondingly, r denotes the same number in K . Then we have

f racW C K W C K 1 pb
r r exp 2* r r J (9.16)

Let q denote the number of nearest neighbours pairs in K having different spins, correspondingly q in K ,
and c the number of nearest neighbour pairs, which are separated in C by cluster borders. Then we have

r q r q c

and hence

r r q q

Thus Eq. (9.16) may be written as

f racW C K W C K exp 2* q q J

The last expression can be rewritten in amore appropriate way by considering that the energies E K and
E K of the configurations K and K can be written as

E K dLdJ 2qJ
E K dLdJ 2q J

9.5. THE CLUSTER ALGORITHM 317

and hence

E K E K 2 q q J

so that finally

f racW K K W K K exp * E K E K

We immediately recognise again the detailed balance condition. This completes the proof of the Cluster
algorithms.

Prior to presenting the Java code of the Cluster algorithm for the 2 dimensional Ising model it may be
helpful do give a more detailed description of the practical implementation of the three steps (i), (ii), and
(iii) introduced above. The experience with the Hoshen–Kopelman algorithm for percolation problems will
turn out to be very useful. Again we follow Ref. Schnakenberg [1995].

First let us remark that we will make use of helical boundary conditions. The spin configuration will be
represented in a linear array denoted by s), where the index) may assume the values) 1 2 N L2,
where L denotes the number of spins in one dimension. The index) is easily obtained from the Cartesian
coordinates i, j

) i jL; for d 2
) i jL kL2; for d 3

The nearest neighbours of the lattice site) are easily determined: in 2 dimensions the left and the right
neighbour are at) 1 and the upper and the bottom neighbours are at) L; in 3 dimension we have
furthermore a neighbour in front and on the back at) L 2. Counting the lattice sites in this way we have
essentially fixed the boundary conditions: If the lattice site) is on the right border of the lattice its right
neighbour will be in the line below on the left border; and so on. We need only a prescription for the case
that the numerical value of µ) 1, µ) L, µ) L2 is negative or greater then N Ld :

µ 0 : µ µ Ld

µ Ld : µ µ Ld

The helical boundary conditions are depicted in Fig. 9.9.

Figure 9.9: Helical boundary conditions

The initial configuration of the spins s) will be saved in a linear array S) . We will need to further
arrays, A) with 1) N and B c with c 1 2 C N. For a given lattice site) we have to
distinguish whether a bond to a nearest neighbour µ has been established or not. In the first case s) sµ.
In the second case, either sµ s) or s) sµ and the bond was not established with probability 1 p b.

Sweep (i): for) 1 N
1. No bonds are established to the nearest neighbours µ) 1 and µ) L of lattice site). With

lattice site) begins a new cluster with name c, i.e., we set A) c. Since no bonds are established starting
from) the cluster c is unbound and we set B c 0.

2. A bond is established to exactly one of the two neighbours µ) 1 and µ) L of lattice site
). The nearest neighbour spin at µ belongs to cluster c . Hence also cell) is ascribed to cluster c , i.e.,
A) c ; the B array is unchanged.

3. A bond is established to both nearest neighbours µ1) 1 and µ2) L of lattice site) and cell
µ1 and µ2 belong to the same cluster c . In this case we proceed as in 2. and set A) c .

4. A bond is established to both nearest neighbours µ1) 1 and µ2) L of lattice site) and
cell µ1 and µ2 belong to different clusters, say A µ1 c1 and A µ2 c2. We assume that c1 c2. The
clusters c1 and c2 have to be united. To this end we begin by attributing cell) to the cluster with the smaller
name, A) c1. Then cluster c2 is attached to cluster c1 by putting B c2 c1. If cluster c2 was already

318 CHAPTER 9. MONTE-CARLO METHODS

attached to another cluster c2, i.e., B c2 c2 then we have to go back and set B c2 c1. Negative
entries B c c indicate that the cluster c has been attached to the cluster c.

Because of the helical boundary conditions the following situation may arise. A cell) in the first row
may establish bonds to a cell µ in the last row, which has not yet been ascribed to any cluster. In this case
we put A) A µ c.

Sweep (ii): for c 1 C, where C is the largest cluster name.
1. The cluster c is not attached, B c 0. Draw a equally distributed random number 1 r 1 and

put B c 1 if r 1 2, else put B c 2.
2. The cluster c is attached, B c c 0. The value B c B c is taken over. If c c as a

consequence of further attachments, eventually step 1. has to be repeated for B c .
Sweep (iii): for) 1 N.
1. A new configuration is generated with the help of the rule S) 2B A) 3.

Figure 9.10: The stages of the Swendsen–Wang algorithm for a 6 6 array with helical boundary conditions. IM
WESENLICHEN DIE FIGUR AUS MACKEOWN, S.375 MIT ANDEREN RANDBEDINGUNGEN.

Bibliography

Binder, K. Applications of Monte carlo methods to statistical physics. Rep. Prog. Phys., 60:487–559, 1997.

Binder, K. und Heermann, D. W. Monte Carlo Simulation in Statistical Physics. An Introduction. Springer,
Berlin, 1988.

Brush, S. G. History of the Lenz–Ising model. Rev. Mod. Phys., 39:883, 1967.

Flyvbjerg, H. und Petersen, H. G. ?????????????????? J. Chem. Phys., 91:461, 1989.

Fortuin, C. M. und Kasteleyn, P. W. ?????? Physica, 57:536, 1972.

Gould, Harvey, Spornick, Lynna Gould und Tobochnik, Jan. Thermal and Statistical Physics Simulations.
The Consortium for Upper–Level Physics Software. John Wiley & Sons, New York, 1995.

H.Flyvbjerg. Error Estimates on Averages of Correlated Data. In János Kertész und Imre Kondor, Heraus-
geber, Advances in Computer Simulation, Band LNP 501 von Lecture Notes in Physics, Seite 88, Berlin.
Springer, 1998.

Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Physik, 31:253, 1925.

Kalos, Malvin H. und Whitlock, Paula A. Monte Carlo Methods, Band Volume I: Basics. John Wiley &
Sons, New York, 1986.

Kasteleyn, P. W. und Fortuin, C. M. ????? J. Phys. Soc. Japan, 26 (Suppl.):11, 1969.

Metropolis, N., Rosenbluth, A. W., Teller, A. H. und Teller, E. Equations of state calculations by fast
computing machines. J. Chem. Phys., 21:1087, 1953.

Onsager, L. Crystal statistics I. A two–dimensional model with an order–disorder transition. Phys. Rev.,
65:117, 1944.

Schnakenberg, Jürgen. Algorithmen in der Quantentheorie und Statistischen Physik. Zimmermann-
Neufang, Ulmen, 1995.

Swendsen, R. H. und Wang, J. S. Nonunuiversla Critical Dynamics in Monte Carlo Simulations. Phys.
Rev. Lett., 58:86–88, 1987.

319

320 BIBLIOGRAPHY

Chapter 10

Nonequilibrium Monte-Carlo Methods

10.1 The Description of Irreversible Processes
The statistical mechanics of irreversible processes is concerned with the understanding of the following
two observed facts van Kampen [1962]: Consider a collection of similar particles, e.g. atoms or molecules.

(i) On a microscopic level the equations of motion of all individual particles are determined are de-
termined completely by the familiar equations of motions of classical mechanics (Newton’s equations) or
o quantum mechanics (Schrödinger’s equation). These equations are symmetric with respect to past and
future.

(ii) In avery rough and incomplete way the collection of particles may be described by a small numer
of macroscopic variables. These variables obey in a selfconsistent way deterministic phenomenological
differential equations (the balance equations) which are distinguish between past and future.

The problems is that there seems not to be a rigorous derivation of the macroscopic irreversible equa-
tions form the reversible microscopic ones. The task of statistical mechanics of irreversible processes is to
build an approximate bridge beteween the microscopic description and the macroscopic one. In particular,
the most interesting question is: Where does the irreversibility get in the description?

It seems to be appropriate to introduce an intermediate level of description bewteen the microscopic
and the macroscopic equations. The formal setting for this description is the master equation, which as we
already know has the general form

d
dt

P J
J

W J J P J W J J P J

where J is an index characterizing the different states of the system, P J is the probability to find the
system in state J at time t, and W J J is the conditional probability density per time unit for a transition
from state J to state J to take place. The master equation is an equation for the probability density of the
different states. This implies that the evoultion of the physical system is decribed in terms of a Markovian
stochastic process. The master equation is a good candidate for the description of irreversible processes
because of some of its properties. It is evident that the master equation is not invariant under time reversal.
As we will see in the next section the solutions of the master equation tend toward a (fixed) equilibrium
distribution.

With the help of the above introduced mesoscopic level of description the transition beweeen the mi-
croscopic and the macroscipc level can be performed in two steps:

Step 1: The mesoscopic master equation can be derived from the macroscopic deterministic equations
of motions for the contsituents f the many–particle system. This is the difficult step since the irreversibility
is introduced here.

Step 2: From the master equation for the stochastic process derive the deterministic macroscopic phe-
nomenolgical equations. In a schematic way we have the situation depicted in Fig. (10.1).

Of course, step 1 is the most difficult one and we will not discuss it further here. There are several
excellents books introducing the subject of the derivation of master equations from the reversible micro-

321

322 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

Figure 10.1: The three levels of description: macroscopic, mesoscopic, and microscopic.

scopic equations of motion and we refer the interested reader to them Prigogine [1962]; Kreuzer [1981];
McLennan [1989]. Here we will only be concerned with the description of irreversible processes with the
help of master equations and in particular with the simulation of master equations describing irreversible
thermodynamic phenomena.

Frage: Habe ich die Bemerkung zum Papier in dem das Wort master Gleichung zum erstem mal
vorkommt schon in Kap, 2 gemacht?

10.2 The Ehrenfest Dog–Flea Model
The fundamental problem of statistical mechanics is to describe how a system reaches equilibrium in an
irreversible way. In this this process the irreversible macroscipc dynamics has to be compatible with the
reversible microscopic one.

In 1907 Paul and Tatiana Ehrenfest have suggested a stochastic model ?. This so–called ”dog–flea”
model (sometimes it is also called the ”urn model”) is an excelent example for the application of Markov
processes to the investigation of problems in statistical mechanics. The model has been formulated orig-
inally to discuss the meaning of the H–theorem in thermodynamics. Here, we follow the discussion in
Jancel [1969]; Kac und Logan [1987].

10.2.1 The Model
We consider 2N balls (fleas) numbered from 1 to 2N. The balls are distributed in two urns (dogs), say
A and B. At random we choose an integer between 1 and 2N and move the ball whose number has been
drawn from the urn it is in to the other one. The procedure is repeated for an arbitrary number of times s.
If initially there are more balls in urn A, we expect an approach to a naive equilibrium, in which there are
N balls in each urn. Of course, the situation ismore involved because there are fluctuations, i.e., deviations
from the naive equilibrium. These leads to two problems, which can be discussed in this model. Namely,
find the equilibrium distribution of the probem (static problem) and describe the decay of the fluctuations
to the naive equilibrium (dynamic equilibrium).

For notational ease we denote by nA s (nB s the number of balls in urn A (B) after s drawings. Of
course we have

2N nA s nB s

and further we introduce

2k nA s nB s

so that

nA N k
nB N k

Furthermore, it turns out to be useful to introduce % s as the absolute value of the difference of na and nB

%s nA s nB s 2 k

We now deriv the master equation for this model. To this end let us assume that after s drawings
(steps) there are nA s m balls in urn A. Afte a further drawing there are only two possibilities. Either

10.2. THE EHRENFEST DOG–FLEA MODEL 323

nA s 1 m 1 or nA s 1 m 1. Since m N k and according to the nature of the draws we can
write for the transition probabilities

W m 1 m
2N m

2N
N k

2N
(10.1)

and correspondingly

W m 1 m
m
2N

N k
2N

(10.2)

In order to make the meaning of the above transitions explicit we consider the the special initial condition
nA 0 2N. The frst draw implies a decrease of the quantitiy %0 2N of 2. With the second draw the
probability of a further decrease is 1 1 2N, whereas the probability of an increase is only 1 2N. For
N 1023 the probability for a decrease of %s is very large as long as -s is not very small. In this case the
irreversible decrease of %s is very probable.

As we have formulated it the model is a special case of a Markov chain. We introduce the conditional
transition probability T m s n to find nA s m after s draws under the condition that for s 0 we had
nA 0 n. T m s n satisfies the Chapman–Kolmogorov equation

T m s n
l

W m l T l s 1 n

where it follows from (10.1) and (10.2) that

W m l
l

2N
- l 1 m

2N l
2N

- l 1 m

Explicitly the discrete master equation for the conditional transition probability reads

T m s n
m 1

2N
T m 1 s 1 n

2N m 1
2N

T m 1 s 1 n

Accordingly, the discrete equation for the probability density for the special initial condition P m 0
- n m is

P k s
N k 1

2N
P k 1 s 1

N k 1
2N

P k 1 s 1

The above equation completely specifies the urn model.
It is now easy to show that the mean number of balls in urn A decreases exponentially towards its

equilibrium value. To this end we calculate

k s
k

kP k s

k

k
N k 1

2N
P k 1 s 1

N k 1
2N

P k 1 s 1

k

k 1 P k 1 s 1
1
2

k 1
2N

k

k 1 P k 1 s 1
1
2

k 1
2N

k

P k 1 s 1
1
2

k 1
2N

k
P k 1 s 1

1
2

k 1
2N

324 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

By renaming the summation variables the terms in the above exession can be written in the more concise
form

k s k s 1
1
N

k s 1 1
1
N

k s 1

With the initial condition k 0 n the solution to the above discrete equation reads

k s n 1
1
N

s

In the limit N ., , 0, 1 N , &, with s, t this above expression becomes

k t nexp &t

which is just the monotonic exponential approach to equilbrium. In the mean k s starts from n and
approaches 0. Accordingly, it can easily be calculated that

k2 s n2 1
2
N

s N
2

1 1
2
N

which in the limit s . tends to

k2 s .
N
2

As we mentioned an important problem consists in studying the limit probability lim s .P m s n . In
general it is expected that this probability is independent of n, so that we could name it W m . However
this is not the case for the ehrenfest model. A stationary distribution can be obtained provided that the
value of n n0 of nA 0 is not fixed initially and that a distribution W n0 of all possible values is taken,
with 2N

n0 0 W n0 1. In practice we replace the system of two urns by an ensemble of such systems with
initial conditions distributedaccording to W n0 . The stationary probability distribution satisfies

W m
2N

n0 0
W m n0 W n0

with m 0. One can verify that

W m
1
2

2N 2N !
m! 2N m !

which is simply a binomial distribution. If 2N is sufficiently large the binomial distribution can be approx-
imated by a gaussian distribution paked around k 0 with variance k 2 N 2,

W k
1
"N

1 2
exp k2 2N

10.2.2 The Simulation
Schrödinger erwaehnen;

10.2.3 Discussion of the Results
The ”Umkehreinwand” of Loschmidt

The ”Umkehreinwand” has been formulated in 1876 by Loschmidt as an argument against Boltzmann’s
kinetic theory, which is based upon the Boltzmann equation. The starting point of the ”Umkehreinwand”

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 325

is that fact, that in classical mechanics, which is at the basis of Boltzmann’s theory, all processes are
reversible, whereas the Boltzmann equation describes irreversible processes. In particular, the H–theorem
(as we will see in the next section) selcts a particular direction of time, and hence breaks the reversibility.

In fact, it can be shown for the Ehrenfest model, that the following conditional probailities are equal

Prob nA s 1 n nA s m Prob nA s 1 n nA s m

so that in a certain sense the model is reversible. This means, that the reversibility and the tendency of the
%s–curve to decrease are compatible.

The ”Wiederkehreinwand” of Zermelo

The ”Wiederkehreinwand” has been formulated in 1896 by Zermelo. It is an argument against Boltzmann’s
derivation of the H–theorem from classical mechanics. The staring point of the Widerkehreinwand is the
Wiederkehr Theorem of Poincarè, which states that each mechanical system composed of a finite number
of particles returns arbitrarily near to its initial condition after a finite time, the Poincarè Widerkehrzeit.
Obviously, this behavoiur is in contrast to monontonous increase of the entropy which is preticted by the
H–theorem.

Let us denote by P n0 n̄0 n̄0n0 the probability that after s draws the system is agian in the initial
state n0, where it is intended that all the s 1 n̄0 are different from n0. The mean Wiederkehrzeit” T̄ is
found to be

T̄
.

s 1
sP n0 n̄0 n̄0n0

1
W n0

2Nn0! 2N n0 !
2N !

As soon as ”N is large and n0 is significantly different from Nm T̄ is a very large number!

10.3 Parallel Progamming with Java - Introduction
At this point it certainly makes sense to stop for a second with the discussion of physics and enter an
exciting and meanwhile important part of program development: writing parallel programs. The necessity
for this section will be clear, when we do the simulations of the nonequilibrium systems considered in the
following sections, where the time for a simulation on one processor is too long. Of course it is much easier
to study new things on a simple (toy) model, like the Ehrenfest model just discussed. So our aim will be to
write a parallel version of the Ehrenfest model and to execute it in parallel on many computers at the same
time.

In the first section we will discuss general issues connected to parallel programming, which not only
applies to Java, but also to FORTRAN and other programming languages. In the second section we take
a closer a look at the harware used for parallel computing and the third section will be about the software
being applied to parallel algorithms. The fourth section will then finally show you an example of parallel
programming in Java using the Ehrenfest model as an example problem.

10.3.1 What is Parallel/Concurrent Programming?
Why do we have to do it?

These are probably the most often asked questions of the late 90s concerning high performance computing.
Before we want to explain the terms in detail, let us look at the hardware development in the last 10 years
to get an impression, why there is so much hype about parallel programming.

Almost every month the CPUs get cheaper and cheaper and additionally the CPUs get faster too. To be
honest, todays CPUs in usual PCs are much too powerful to be used as simple terminals for word processing

326 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

and some internet surfing. So the situation is that there are many “powerful” CPUs connected mostly by
some kind of networking cable to the internet1 or the intranet2.

In contrary on the high performance computer market the CPUs were getting more expensive com-
pared to the performance gained by using these high-speed processors instead of mass market consumer
PC processors, most notably the Intel processors. So starting around 1990 the supercomputer companies
started to use off the shelf processors, which are much cheaper and put them together with special (ex-
pensive) hardware, which connect these creating a very high performance connection between the CPUs.
Although there are still companies producing specialized expensive processors e.g. for vector computing
machines, most of the modern supercomputers are made out of “standard” processors, also found in small
Workstations and PCs.3 Examples are the Cray T3E, which uses standard DEC Alpha Chips (21164 or
21264), the IBM SP2, which uses Power PC processors, the SGI Origin, which uses the MIPS R10000 and
now also uses the IA64/IA32 architecture also “codenamed Merced” 4 like HP5, and of course one of the
fastest computers in the world: the “ASCII Red”, with about 8000 Intel Pentium Pro processors connected
together. All these processors are also available in single machines, e.g. COMPAQ PCs use DEC Alpha
chips, Apple and IBM sell Power PC computers and of course you will get the Intel Merced in a PC in the
near future.

This leads to two important points to make: we now have a lot of computers all over the world connected
by some sort of cable, having enough resources to do interesting calculations, while somebody is still
working on the machine. We should also mention that these machines are mostly used during the day and
are switched off during the night and weekends or run idle. Second the supercomputers of the late 90s are
“just” a collection of single standard processors connected via a high performance network, which costs
most of the money.

Then in the scientific and industrial areas there are many difficult problems, which can only be solved
using very fast computers. This just means that the time to do the calculation on one processor takes months
or even years and more. A natural step is therefore to ask: How can we use the given hardware consisting
of many CPUs maybe even different ones connected by a network or a high performance network to get
our caluclations done in a shorter time?

The answer of course is to use all the CPUs available for one big problem. So it is like inviting some
friends to help moving from one appartment to another. Without your friends it would take much longer,
but now you have to manage for example ten people running around and have to tell them what to do,
otherwise it would end up in a complete mess. This already leads us to the problem of how to write parallel
programs?

Before diving into the details, let us define, what we mean by parallel and concurrent: The task of the
programmer is to write code, which can then be executed somehow by many CPUs in PARALLEL. Writing
this kind of code is called writing a CONCURRENT program. The computer is later taking care of running
your code in parallel, you just have to write the concurrent code for this to happen. Because this difference
is somewhat cumbersome to keep up with, we will use both terms interchangeably.

10.3.2 The Hardware
Basically there are certain problems to be aware of, when writing concurrent programs:

What kind of the many different hardwares available, do you want to use as a parallel machine? the
hardware question

How are the machines connected? the network question

Is your problem at hand capable of being run in parallel, or differently stated: is it possible to get an
algorithm for solving your problem in parallel? the algortihm question

1The name for the network of all computers in the world connected together.
2The computers connected e.g. in a company (not necessarily connected to the outer world), the internet.
3Actually Workstations just refer to the machines used for some way of high performance in graphics, number crunching or

somewhere else. The difference to the standard PC has almost vanished and so just a price difference refering to the more expensive
parts used for assembling the Workstations remained.

4see http://www.sgi.com/vision/tech.html
5see http://www.businessservers.hp.com/toolbar/5 10/csy ia64support index.html

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 327

How to tell the processors, how to cooperate with each other? the software question

Unfortunately there is still no possible way of avoiding to ask these questions before writing your code (at
least you have to keep them in mind before you start parallel programs and pollute the network and keep
the processors busy.)

Telephone Cable/
Modem/ TV Cable

EthernetPPP / Slip /
ADSL Fast Ethernet

Gigabit Ethernet
SCI

Myrinet
ATM Special

(e.g. Crossbars)

slow fast

copper cables optic fibres/
special cables (short distances)

10Mbps 100Mbps 1000Mbps155Mbps >1000Mbps<10Mbps

cheap expensive

1995 1999 2001 ?

Figure 10.2: The different networking models and cables used to connect the CPUs in a “Parallel Computer”. The
years just represent the “standard” network used for most permanently connected systems. This is by no means a
complete overview, but it should give an impression of what can be expected. The speed denoted above the network
protocol is the theoretical maximum value. In reality you can be lucky, if you accomplish 1/10th of this value.

Table 10.1 Abbreviations used in the area of networking models.
Mbps Million Bits Per Second
ATM Asynchronous Transfer Mode
SCI Scalable Coherent Interface
PPP Point to Point Protocol
SLIP Serial Line Internet Protocol
ADSL Asymmetric Digital Subscriber Line

The first two questions above are mostly interconnected with the third question about the capability of
the problem to be parallelized. The network question being often more difficult to answer than the hardware
question. A small (and incomplete) overview about possible network technologies is given in figure 10.2.

A very important issue for writing concurrent programs and using a parallel machine is addressed by the
memory model of the machine in question. There are two different models implemented by the hardware:
the shared memory model (SM) and the distributed memory model (DM). These refer to the access of the
CPU to the memory available (not the disk space, this is a different concern).

Lets look at two examples:

SM: a 2 processor (SMP) PC machine.
If you have one machine (say a PC), which has two CPUs, each one a Intel Pentium II with 350 MHz
and a main memory of 128 MB RAM, then this is a shared memory machine having two processors.
This of course is all put on one board (the motherboard). Both machines can access the memory at
the same speed and they have equal priority. Of course if one of the processors wants to write or read
the same address they have to be careful and probably have to wait for the other processor.

DM: five connected PCs each with 1 processor.
Now we have a so called cluster of networked workstations or PCs. These are for example connected

328 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

Table 10.2 Abbreviations used for describing computer hardware.
CPU Central Processing Unit
PC Personal Computer
RAM Random Access Memory
SMP Symmetric Multi Processor
MPP Massivley Parallel Processing
NUMA Non Uniform Memory Access
SM Shared Memory
DM Distributed Memory
DSM Distributed Shared Memory

by an Ethernet, so each having a network card (PCI or other) and a cable (e.g. twisted pair copper
cable) connecting them. Each of the machines have 32 MB RAM, so altogether there are five times
32 MB RAM, which adds up to 160 MB RAM. But this memory is of course no longer available to
all the processors at the same speed. If one processor wants to read/write a value from/to an address
in one of the other machines, it has to communicate using the network. So in this case we have a
distributed memory.

There are two special cases, which are very common and have to be mentioned seperately: The SMP
and the NUMA architectures. The SMP machine as already mentioned in the first example above is a
computer/mainboard, which has two or more processors directly on one board. All the processors together
have one main memory, which they have to share. But for each CPU the computer looks exactly the same,
therefore the name SMP (Symmetric Multi Processor).

The NUMA architecture refers to a special kind of shared memory architecture. For example the SGI
Origin 2000 is an example thereof.6 In this model you take SMP boards (you can take single CPU boards
too) each with a certain amount of onboard main memory and put them together in a rack. The boards get
connected by special networking hardware for example a crossbar. The racks can then also be connected
again with specialized hardware. This hardware/network has to make sure that the total memory is available
to all CPUs at (almost) the same speed and that the caches used for the memory is always coherent (not out
of date). Each processor can therefore access all the memory directly without any special considerations,
but actually the time (called latency) to access different addresses in memory can be different depending
on where the processor is and which memory you want to access (the name NUMA refers to this: Non
Uniform Memory Access). But the whole memory management is implemented in hardware and therefore
hidden from the user.

10.3.3 The Software
Now that we have decided or know about the hardware to use for the problem we want to solve, we have
to decide what software model to use to get all CPUs working for us.

First of all you have to think about an algorithm for the parallel implementation of the problem to
be solved. This is actually a difficult and time consuming part and you probably have many different
strategies/algorithms for one single problem. You also do not know beforehand, how each of the algorithms
will compare to each other on the same platform and how they will perform on different hardware.

If you have an idea, how to use many CPUs for your problem, then you can start thinking about the
software model to be used for your available hardware (see figure 10.3). This decision is the most difficult
one, because it is not very easy to go back and use a different model. Writing the code for a given software
model might be very easy and fast or you might have to spend a few months to get an efficient code. Then
you can run your program on different platforms and use the fastest available for your problem.

6Until 1999 the crossbar technology was basically not available for Intel platforms, but now COMPAQ even proposes
servers with up to eight Intel Xeon processors using crossbar technology called “Profusion Eight-Way Architecture” (see
http://www.compaq.com/products/servers/technology/eightway-pd.html). This again will lead to a decrease in hardware prices for
the high performance shared memory (NUMA) architectures.

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 329

Threads OpenMP
HPF

MPI / PVM Symphony

DSM
(Treadmarks, JiaJia)

(ADAPTOR)

(Sockets, RMI)

(DoAccross, etc.)

Shared
Memory

Distributed
Memory

easydifficult

high goodPerformance

Programming

(uses RMI)

Figure 10.3: Possible software models to be used for parallel programming. For a description of the used abbreviations
see table 10.3. Difficult/Easy programming refers to the time needed to implement parallel algorithms using a certain
model.

Table 10.3 Abbreviations used for the models in parallel programming.
DSM Distributed Shared Memory
HPF High Performance Fortran
MPI Message Passing Interface
PVM Parallel Virtual Machine
OpenMP Open Multiple Processes
RMI Remote Method Invocation
COBRA Common Object Request Broker Adapter

But what are the different software models?

RMI and COBRA

COBRA and RMI are basically an open standard for a service provided by many computers to distribute
objects (in the sense of objects the oriented paradigm) across heterogenous networks. It is kind of a network
service to supply programs with certain objects not available on the computer running the program. What
you need for this to work are so-called ORB (Object Request Brokers), which are servers for objects and
their names. You can call it the “object oriented version of MPI”.

Both can of course be used for object oriented parallel computing, but still they have not gained a lot
of attraction in the scientific community. Not because they are inferior to the other models, but there is a
much higher hill to be climbed in order to write programs using RMI or COBRA. Of course this is a very
subjective opinion, but all the other models are very widespread for high performance computing. RMI
and COBRA are still in their beginnings.

This ansatz to distributed (parallel) computing is mostly used for large databases, network applications,
etc. RMI is included in standard Java, but COBRA is coming seperatley and you need additional software.

But you should keep in mind, that RMI and COBRA are actually “extensions” to using threads, because
threads are only possible for shared memory systems. For distributed memory systems, like large intranets
or even the whole internet, you have to use RMI for parallel applications in Java or choose COBRA. The
other choices are the subject of the next few sections. A nice introduction (based on Java 1.1) to RMI and
COBRA in Java is [Farley, 1998].

Since Java 2 all the COBRA functionality is included in the standard and there are 7 standard API
packages, which implement all necessary stuff to use COBRA in Java. Take a look at the JDK 1.2 API
documentation.

330 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

OpenMP

If you want to spend less time for coding, you should use OpenMP, an approach based on directives. You
just have to insert comments (FORTRAN) or pragmas (C/C++) before the code you want to be executed in
parallel. The DoAccross directives and other directives based models were the forerunners of OpenMP and
should not be used anymore, because all companises have already or are going to switch to the OpenMP
standard sooner or later. The advantage of OpenMP is, that you do not have to change your serial program,
you just add comments (or pragmas in C/C++) and most of the work is done by an appropiate compiler.
The drawbacks are the restriction to shared memory machines 7 and the worse performance compared to
good MPI programs.

??? Example OpenMP program

Symphony

An alternative to OpenMP would be to use a kind of server, which distributes small pieces (jobs) of your
problem to many machines available and collects the results to be processed later on, therefore exploiting a
kind of distributed memory model, but with no communication between the different jobs. An example of
this philosophy realized in Java is a project developed at the University of Freiburg called Symphony (see
later on).

HPF

If you want to spend more time thinking about how the data and the work can be distributed to the avialable
processors, then you can go with HPF. HPF employs a data distributed model and is of course only available
to Fortran 77/90/95 programmers and has not found a very widespread use. But still it is a viable tool for
many problems and it is available on almost any computer architecture. An interesting solution is the (free)
ADAPTOR software, which converts HPF programs to Fortran 90 with MPI calls or OpenMP directives.

MPI / PVM

Even more work and time has to be spent to write a MPI/PVM (see table 10.3 program. PVM was the first
available message passing interface, but has meanwhile been abandoned by most people in favour of MPI,
which is today the standard to use for writing message passing programs.

In this model you have to take care of everything yourself. You have to tell the computer, when, what
and with who you want to exchange messages (data). This works by writing a single program, which
consists of several calls to MPI functions8. There are functions for sending messages from one CPU to
another or you can send data from one CPU to all other CPUs working on the same problem (a so called
communicator). The compiler (or to be exact the library) just translates the MPI commands to a lower level
of networking commands, depending on the available library and network hardware used.

For example if you have an ethernet network with several PCs running Linux/Windows, you can install
a free version of MPI (e.g. MPICH or LAM) and compile the MPI programs. The code will then be run on
all requested CPUs using the ethernet protocol to communicate and exchange data. On a shared memory
machine (including SMP machines) you can also use MPI, but this time the communication could be done
directly, so using MPI for an SMP machine is usually a big overhead and should be avoided. The biggest
advantage of MPI is, that it is available for all platforms and hardware architectures, so it is completly
portable.

(Java) Threads

The last alternative for writing parallel programs is using threads. Threads are small parts of a single
program, which are to be executed by the same CPU using time sharing or by a separate CPU. So it is kind

7There are meanwhile software packages available, which convert OpenMP programs into usual Fortran/C/C++ code using MPI
calls and therefore running on distributed memory machines, e.g. OdinMP, etc.

8You just have to add a library to your compiler commands and you have to use a special program to run the parallel MPI program
(mpirun).

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 331

of using MPI calls, but this time you are not calling high level library functions, but low-level functions.
These are implemented on the level of the underlying operating system. This means your program is very
fast in starting a job on a different CPU and it is very easy to have global variables, but you are confined to
shared memory machines and to a certain operating system. So this is usually not the model of choice for
a scientific problem.

But with Java this is not (always) correct anymore. In Java it is very easy to use threads and because
Java is portable across all platforms, almost all of the restrictions just mentioned no longer apply. But of
course you still have to work a bit more to get a threaded program running correctly compared to an MPI
or OpenMP program. But it definitly has become an interesting alternative, if Java is becoming much faster
in the next few years (and we are sure it will).

10.3.4 Amdahl’s Law
At last we want to mention an important point, which has already been made by G. Amdahl in 1967: If you
denote the part of a program to be run sequentially by f , then the “speedup” S N can be calculated as

SN
T1
TN

N
1 f N 1

Where the speedup is defined as the ratio of the time to complete the serial program and the time needed
by using N processors simultaneously. This dramatically restricts the performance gained by using many

0 20 40 60 80 100 120 140
Number of Processors

0

20

40

60

80

100

120

140

Sp
ee

du
p

1%

0,5%

5%

maxim
um possi

ble Speedup

Figure 10.4: Amdahls law with some examples for the value of the serial part f of a program.

CPUs. So the sequential parts of a parallel program should be kept as small as possible. Fortunately the
speedup depends on the problem size and will increase for bigger problems.

332 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

10.3.5 The Ehrenfest Model using a Parallel Program
Here we want to demonstrate, how to write and use a parallel program employing the Ehrenfest model as
an example problem.

Symphony

Using Symphony is very easy in this case. The idea is to compute the same model (number of time steps)
with different number of fleas on dog one. Then we can generate very easily the statistics for the Ehrenfest
model discussed in section 10.2.

/
DogFlea . java

5
Created : Thu Jan 2 1 1 1 : 3 0 : 3 1 1 9 9 9

@author Pe ter B i e c h e l e
@version

10 /

import j ava . awt . ;
import j ava . awt . even t . ;
import j ava . u t i l . ;

15 import j ava . a p p l e t . ;
import ptolemy . p l o t . ;
import s i m u l a t i o n . ;

publ i c c l a s s DogFlea extends Apple t
20

/ / I npu t v a l u e s for Symphony
publ i c double Nd = 1 0 0 0 ;
publ i c double n0d = 1 0 ;

25 publ i c in t N = (in t) Nd ; / / number of f l e a s
publ i c in t n0 = (in t) n0d ; / / i n i t i a l number of f l e a s on dog 1

publ i c in t s t e p s = 1 0 0 0 0 ; / / How many t ime s t e p s to be done
in t [] f l e a ; / / to which dog be longs the f l e a ? (1 or 0)

30
/ / Output va lue for Symphony
publ i c in t na , nb ;

/ / P a r a l l e l FLAG: 0 No p a r a l l e l job , 1 use Symphony
35 in t SYMPHONY=1;

Random rand = new Random () ;
P l o t p l o t ;

40 publ i c void run ()
in t choose ;
boolean connec t = f a l s e ;

i n s t V a r s () ;
45 i n i t i a l () ;

na = c a l c k () ;

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 333

i f (SYMPHONY==0)
System . out . p r i n t l n ("s=0: "+na) ;

50 p l o t = new P l o t () ;
p l o t . s e t T i t l e ("Difference of fleas versus time") ;
t h i s . add (p l o t) ;
t h i s . r e p a i n t () ;

55
for (in t s = 1 ; s s t e p s ; s ++)

choose = D i s t r i b u t i o n . n e x t I n t e g e r (rand , N 1);
f l e a [choose]=1 f l e a [choose] ;
na = c a l c k () ;

60
i f (SYMPHONY==0)

p l o t . addPo in t (0 , s , na , connec t) ;
i f (connec t == f a l s e) connec t = true ;
i f (s %100==0) p l o t . r e p a i n t () ;

65

nb=N na ;
i f (SYMPHONY==0) p l o t . r e p a i n t () ;

70
in t c a l c k ()

in t sum =0;
for (in t i = 0 ; i N; i ++)

sum+= f l e a [i] ;
75 return sum ;

void i n i t i a l ()
for (in t i = 0 ; i N; i ++)

80 i f (i n0) f l e a [i]=1 ;

void i n s t V a r s ()
85 f l e a = new int [N] ;

publ i c DogFlea ()

90
publ i c s t a t i c void main (S t r i n g [] a rgs)

Frame f = new Frame ("Dog-Flea Model") ;
f . s e t S i z e (6 0 0 , 6 0 0) ;

95 DogFlea prg =new DogFlea () ;
f . add (prg) ;
f . show () ;

/ / Close Window e v e n t
100 f . addWindowLis tener (new WindowAdapter ()

publ i c void windowClosing (WindowEvent e)
System . e x i t (0) ;

) ;

105 prg . i n i t () ;

334 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

prg . s t a r t () ;

publ i c void i n i t ()
110

publ i c void s t a r t ()
run () ;

115
publ i c void s top ()

/ / DogFlea

First you have to compile the java program and copy the class file to the directory, where a browser
can access it (e.g. /home/user/public_html/Symphony/SymphonyTasks for a unix machine).
Then on the Symphony server machine, which has to have a WWW server running 9 you have to edit the
file ../Symphony/SymphonyServer/tasks.sym to contain the parameters you want to compute,
e.g. it could look like this:

process=DogFlea;
entryPoint=run;
param(n0d),min=10,max=1000,incr=10;
param(Nd),const=1000;
return (na,nb) as {EVENT @DogFlea @run0};
timeout=1;

Now you start the Symphony server with

.../Symphony/SymphonyServer/start_server

and on the clients (the computers you want to have to participate on the computation) you start the ap-
pletviewer with

appletviewer http://SymphonyServer/˜user/Symphony/applet.html ,

where you have to substitute your Symphony server WWW address and the name of the user. This assumes
you have a unix system, for a Windows system just change the path accordingly.

The clients are only computing, if the appletviewer window is visible, so the user calling the page
to start the Symphony applet can decide if she/he wants to participate or not. On the clients you get the
messages:

{DogFlea.59}
...got to process DogFlea.59
Results of run;
class: DogFlea;
entry point: run;
Input Field: n0d=810.0; Input Field: Nd=1000.0;
Output Field: na=479; Output Field: nb=521;
Time to process: 3.0 seconds;

** End of Symphony run **

This shows one job, which was run using 810 fleas initially on dog 1 and 1000 fleas alltogether. The results
get saved in a file called event.log in a directory

.../Symphony/SymphonyServer/data/DogFlea/run0/

The second step is to extract the results from the logfile, e.g. use the following program:
9For example the Apache web server. Apache is freely available for all unixes and even for Win32 since a few months ago,

although the performance is much better on unix.

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 335

/
ConvertSymphony . java

5
Created : Tue Jan 2 6 1 0 : 3 9 : 0 1 1 9 9 9

@author Pe ter B i e c h e l e
@version

10 /

import j ava . io . ;

publ i c c l a s s ConvertSymphony
15

/ / F i l e s for read and w r i t e
F i l e f i l e i n = new F i l e ("event.log") ;
F i l e f i l e o u t = new F i l e ("gnu.out") ;

20 / / Parameters to read out : a l so the o u t p u t order in the new f i l e
S t r i n g [] p = "n0d" , "Nd" , "na" , "nb" ;

publ i c ConvertSymphony ()

25
publ i c s t a t i c void main (S t r i n g [] a rgs) throws IOExcep t ion

ConvertSymphony a = new ConvertSymphony () ;
a . run () ;

30
publ i c void run () throws IOExcep t ion

F i l e R e a d e r f i n = new F i l e R e a d e r (f i l e i n) ;
F i l e W r i t e r f o u t = new F i l e W r i t e r (f i l e o u t) ;
Buf fe redReade r in = new Buf fe redReade r (f i n) ;

35 B u f f e r e d W r i t e r out = new B u f f e r e d W r i t e r (f o u t) ;

S t r i n g l i n e , l i n e o u t , sdummy ;
char s c h a r ;
in t pos , s t a r t , end , f l a g ;

40
out . w r i t e ("##") ;
for (in t i = 0 ; i p . l e n g t h ; i ++)

out . w r i t e (" "+p [i]) ;
p [i]= p [i]+"=" ;

45
out . newLine () ;

while ((l i n e = in . r eadLine ()) ! = nul l)
/ / Sys tem . out . p r i n t l n (l i n e) ;

50 f l a g =0;
l i n e o u t =new S t r i n g () ;
for (in t j = 0 ; j p . l e n g t h ; j ++)

pos = l i n e . indexOf (p [j] , 0) ;
s t a r t =pos +p [j] . l e n g t h () ;

55
end = s t a r t ;
s c h a r = l i n e . charAt (end) ;

336 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

while (s c h a r ! = ’ ; ’)
end ++;

60 s c h a r = l i n e . charAt (end) ;

sdummy=" "+ l i n e . s u b s t r i n g (s t a r t , end) ;
/ / Sys tem . out . p r i n t l n (j +” : ”+p [j]+ ” : : ”+sdummy) ;
i f (j ! = 1)

65 l i n e o u t = l i n e o u t . conca t (sdummy) ;
e l s e i f (Double . va lueOf (sdummy) . i n t V a l u e () = = 1 0 0 0)

f l a g = 1 ;

i f (f l a g ==1)
70 out . w r i t e (l i n e o u t) ;

out . newLine () ;

in . c l o s e () ; f i n . c l o s e () ;
75 out . c l o s e () ; f o u t . c l o s e () ;

/ / ConvertSymphony

This produces a data file containing the variables (n0d Nd na nb) and can be plotted using Ptplot or
by any plotting program e.g. gnuplot (after starting gnuplot use for examplegnuplot "gnu.out" us-
ing 1:3).

?? Discuss sprintf() and Stringbuffer ????? Other method (String, arrays) ?? new version (ints)

Java Threads

Now we take a look at Java Threads, the details can be found in [Oaks und Wong, 1999].
A thread is a shorthand for “thread of control” and stands for a section of code executed independendly

of other portions of the code in a single program. You are actually already familiar with this concept,
because every operating system today uses multitasking to run multiple programs at the same time sharing
one CPU. If you view these “tasks” as single threads, we only have to extend to multiple threads in a single
program.

In Java the JVM is responsible of starting multiple threads in your code. That is also where the restric-
tions come in: most of the JVMs did not support multiple threads running in parallel on SMP machines so
far, meaning that you do not have real parallel programs working with all available CPUs. Nevertheless
the concept of threads is useful for single processor machines. For example we have already met this case
in the last chapters, where we did extensive calculations, while still the user had the opportunity to inter-
rupt the calculation by hitting a mouse button or moving the mouse. This is only possible, if during the
simulation a thread is always asking for user intervention.

The JVM thread implementation of multiple threads, with only one thread being active at a time, is
called green threads10. All JDK implementations employ these green threads for Java threads.

Here we want to concentrate on running different threads on several CPUs. To that end we need a
JVM, which supports “real” threads or so-called native threads 11. If the JVM you are using supports native
threads, should be stated in the JVM documentation. For the JDK, all the 1.2 versions on all platforms
support and use native threads without further notification. For JDK 1.1.7 running Linux/Solaris you can
get an additional package, which supports native threads. To call the native threads version you have to use
java -native Program.

10These threads are user-level threads. It means that the first thread started by the operating system starts multiple threads itself and
the operating system does not interfere. These are also called lightweight processes, because the kernel of the operating system does
not have to do much work for switching from one user-level thread to another

11These are so-called kernel-level threads. This time the kernel of the operating system has to do some context switching and
therefore there is a little overhead compared to user-level threads.

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 337

Operating System
(Linux, Windows, etc.)

Application 1

Application 2

Java Virtual Machine
(JVM)

Thread 0

Thread 1
Thread 2

Figure 10.5: A multitasking operating system employing a Java Virtual Machine, which runs multiple threads.

Native threads are only useful for threads, which do some heavy calculations. For the case where you
only want to have user interaction and calculation running in “parallel”, like in the molecular dynamics
simulation or the Ising model, we are better off with the green threads.

Applets also employ threading, but here we also have to check if the browser or appletviewer running
the applet “only” have green threads or even support native threads. Actually I do not know of any JVM
implemented in a web browser capable of using native threads yet. But the need for threads (green threads)
in applets is even more important than for applications, because if you have an applet on top of a web page
and the applet has to do some time consuming initializations, it will stop showing the rest of the page until
the applet finishes. If the browser itself (not the Java applet) uses a seperate thread for the applet, this is
not a concern, but still you should use your own Java threads for time consuming operations in an applet.

Now let us take a look at our example and how we can use Java threads to speed up our calculation of
the Ehrenfest model. The Thread class in Java is located in the java.lang package. We basically have
two ways of defining a thread before we can use it.

Extending the thread class in a separate file. Example: First the thread:

public class OurOwnThread extemds Thread {
public void run() {

// here we can do computations
}

}

and second the calling class:

public class OurOwnThread1 {
public static void main(String[] args) {

// main method of application
OurOwnThread own = new OurOwnThread();
own.start(); // this calls the run() method of the thread

}
}

Implementing a runnable interface. Implementing an interface means to supply all necessary meth-
ods needed for an interface (here the thread) to be build up. For a thread you only have to supply the
run() method, nothing else. Example:

338 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

public class OurOwnThread2 implements Runnable {
public static void main(String[] args) {

// main method of application
OurOwnThread2 own = new OurOwnThread2();
Thread th = new Thread();
th.start(); // this calls the run() method of the thread

}
public void run() {

// the computation method of the thread
}

}

Which way you use does not matter and there is no preferred way, it just depends on your personal prefer-
ence.

Now there might be a little confusion about the start() method. There is a start() method in
the Applet class and one in the Thread class. The same applies to the stop() method. So you have to be
a little bit careful to which method you refer, but it will always be clear from the context. And a second
remark is about the run() method. You should never call directly, but always call the start() method
of the thread, which in turn starts the thread and calls the run() method. This is a common mistake,
because the program starts and works correct, but it does start the threads sequentially and not in parallel.

Now finally let us see how we can apply this to our problem. First we need the thread:

import j ava . u t i l . ;
import s i m u l a t i o n . ;

/
5 DogFleaCalc . java

Created : Wed Mar 1 7 1 2 : 3 7 : 0 6 1 9 9 9

10 @author Pe ter B i e c h e l e
@version 1 . 0

/
publ i c c l a s s DogFleaCalc extends Thread

in t na , nb ; / / Output v a l u e s
15 in t n0 , N, s t e p s ;

p r i v a t e in t [] f l e a ; / / to which dog be longs the f l e a ? (1 or 0)
p r i v a t e Random rand = new Random () ;

20 DogFleaCalc (in t N, in t n0 , in t s t e p s)
t h i s . f l e a = new int [N] ;
t h i s . n0 = n0 ;
t h i s . N = N;
t h i s . s t e p s = s t e p s ;

25

publ i c void run ()
in t choose ;
boolean connec t = f a l s e ;

30
i n i t i a l (n0) ;
na = c a l c k () ;

System . out . p r i n t l n ("at time s=0: "+na) ;
35 for (in t s = 1 ; s s t e p s ; s ++)

choose = D i s t r i b u t i o n . n e x t I n t e g e r (rand , N 1);

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 339

f l e a [choose]=1 f l e a [choose] ;
na = c a l c k () ;

40 nb=N na ;
System . out . p r i n t l n ("at time s="+ s t e p s +": "+na) ;

in t c a l c k ()
45 in t sum =0;

for (in t i = 0 ; i N; i ++)
sum+= f l e a [i] ;

return sum ;

50
void i n i t i a l (in t n0)

for (in t i = 0 ; i N; i ++)
i f (i n0) f l e a [i]=1 ;

55
/ / DogFleaCalc

And second we need a “server”, which starts the threads and collects the answers; this is very similar
to the Symphony example and will be the same in the MPI problem:

/
DogFlea . java

5
Created : 2 1 Mar 1999

@author Pe ter B i e c h e l e
@version 1 . 0

10 /

import j ava . awt . ;
import j ava . awt . even t . ;
import j ava . u t i l . ;

15 import j ava . a p p l e t . ;
import ptolemy . p l o t . ;
import s i m u l a t i o n . ;

publ i c c l a s s DogFleaThreads extends Apple t
20

publ i c in t Nthreads = 4 ; / / how many t h r e a d s = i n i t i a l c o n d i t i o n s ?
publ i c f i n a l in t NCPUS = 2 ; / / How many CPUs are a v a i l a b l e to be used
/ / ATTENTION: Nthreads has to be d i v i s i b l e by NCPUS

25 p r i v a t e in t N = 1 0 0 0 ; / / number of f l e a s
p r i v a t e in t s t e p s = 1 0 0 0 0 0 ; / / How many t ime s t e p s to be done

p r i v a t e DogFleaThreads prg ;
p r i v a t e Thread c u r r e n t ;

30
publ i c DogFleaThreads ()

publ i c s t a t i c void main (S t r i n g [] a rgs)
35 Frame f = new Frame ("Dog-Flea Model") ;

340 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

f . s e t S i z e (6 0 0 , 6 0 0) ;
DogFleaThreads prg =new DogFleaThreads () ;
f . add (prg) ;
f . add (new Label (" I am calculating")) ;

40 f . show () ;
/ / Close Window e v e n t
f . addWindowLis tener (new WindowAdapter ()

publ i c void windowClosing (WindowEvent e)
System . e x i t (0) ;

45) ;
prg . i n i t () ;
prg . s t a r t () ;

50 publ i c void i n i t ()
i f (prg == nul l)

prg = new DogFleaThreads () ;

55 c u r r e n t = Thread . c u r r e n t T h r e a d () ;
c u r r e n t . s e t P r i o r i t y (Thread . MAX PRIORITY) ;

/ / Ensure Round Robin S c h e d u l i n g
/ / S i m p l e S c h e d u l e r ss = new S i m p l e S c h e d u l e r (1 0 0) ;

60 / / ss . s t a r t () ;

publ i c void s t a r t ()
in t n0 ; / / i n i t i a l number of f l e a s on dog 1

65 in t s t e p s i z e = N/ (Nth reads 1);
Thread [] job = new Thread [NCPUS] ;

/ / s t a r t e x a c t l y NCPUS t h r e a d s , then wai t fo r them to f i n i s h
/ / and s t a r t again NCPUS t h r e a d s

70 in t p r i o =Thread . c u r r e n t T h r e a d () . g e t P r i o r i t y () 1 ;
in t count =0;
for (n0 = 0 ; n0 =N; n0 += s t e p s i z e)

job [count]= new Thread (new DogFleaCalc (N, n0 , s t e p s)) ;
job [count] . s e t P r i o r i t y (p r i o) ;

75 job [count] . s t a r t () ;
count ++;
i f (count ==NCPUS)

/ / s t a r t a l l t h r e a d s
for (in t j = 0 ; j NCPUS; j ++)

80 / / job [j] . s t a r t () ;

System . out . p r i n t l n (" Waiting !") ;
/ / wai t fo r a l l t h r e a d s to be done
for (in t j = 0 ; j NCPUS; j ++)

85 try
job [j] . j o i n () ;

catch (I n t e r r u p t e d E x c e p t i o n e)

System . out . p r i n t l n (" Ready !") ;
90 count =0;

System . e x i t (0) ;

10.3. PARALLEL PROGAMMING WITH JAVA - INTRODUCTION 341

95 publ i c void s top ()
/ / DogFlea

The void join()method returns only, if the thread is marked as no longer being alive and therefore
being completed. The join method also accepts an argument, which is the timeout (a long variable) in
milliseconds. If you give a timeout, join returns at the latest after the timeout time.

If you compile both classes and start the DogFleaThreads.java class you will see the threads
starting and stopping, here we always start two threads at a time and wait for both to finish.

Try the two different executions:

java -green DogFleaThreads

java -native DogFleaThreads

On UNIX you can use the time command to check the execution times. Here we run both commands
(-green on the left and -native on the right) on a Linux machine using the JDK1.2 on a single and a
two processor machine.

On a single processor machine you get:

Waiting !
at time s=0: 0
at time s=100000: 499
at time s=0: 333
at time s=100000: 496
Ready !
Waiting !

at time s=0: 666
at time s=100000: 475
at time s=0: 999
at time s=100000: 530
Ready !

real 4m32.880s
user 4m1.290s <-----------
sys 0m4.750s <-----------

at time s=0: 0
at time s=0: 333
Waiting !

at time s=100000: 515
at time s=100000: 512
Ready !

at time s=0: 666
Waiting !

at time s=0: 999
at time s=100000: 476
at time s=100000: 489
Ready !

real 4m25.449s
user 4m2.110s <----------
sys 0m6.300s <----------

And on a 2 processor machine you will get:

Waiting !
at time s=0: 0
at time s=100000: 491
at time s=0: 333
at time s=100000: 496
Ready !
Waiting !

at time s=0: 666
at time s=100000: 473
at time s=0: 999
at time s=100000: 478
Ready !

real 0m14.397s <-----------
user 0m12.610s
sys 0m0.180s

at time s=0: 0
at time s=0: 333
Waiting !

at time s=100000: 481
at time s=100000: 518
Ready !

at time s=0: 666
Waiting !

at time s=0: 999
at time s=100000: 503
at time s=100000: 472
Ready !

real 0m8.216s <------------
user 0m12.970s
sys 0m0.170s

Neglect the absolute times given, because we used two totally different machines for the tests. But
look at the relative timings comparing the native and the green threads on single and multiple processor
machines.

342 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

By using a 2 processor machine we almost get a speedup of 2 for this problem (look at the real time),
and on the single processor machine the performance gets worse by using native threads (look at the user
and system time), which is due to the nature of kernel-level threads and user-level threads. The use of
JDK1.2 is just due to the fact that a JIT is already supplied with the 1.2 version and we wanted to speed up
the program. You could also use another JIT with JDK1.1.

You should also note that the messages appear randomly and not in any order. So if you use output in
threads you should always remember, that there is no given order for the output to be send to the screen.
This will be also true for MPI programs.

The reason for the randomness is the way the JVM executes the threads. This is called the “scheduling
of threads”. Like the operating system has to tell, at what time and how long the processes are to be
executed , the JVM has to use a scheduling algorithm to tell each thread, when it has to go on and when
it has to wait. Because this is a difficult issue, we do not go into details. The scheduling used in the JDK
is not written in detail in the JVM specifications and therefore there are differences on different platforms.
It only states that it has to be a pre-emptive, priority based scheduler, where the priority (greater equal to
zero) is a natural number and the highest number refers to higher priority. The case of threads with equal
priority creates most of the problems. For a more detailed discussion and examples of e.g. a Round-Robin
Scheduler written in Java, you should take a look at a book about threading (like [Oaks und Wong, 1999]).

An important issue concerning threads is of course a race condition. This is the problem of ensuring
that a variable (e.g. a global one) is accessed by only one thread at a time and if a variable is changed, all
the other threads have to know about it. To ensure these there are certain constructions to be used, like the
synchronized keyword. Because this is a rather complex topic, you should consult a comprehensive
discussion, e.g. in [Oaks und Wong, 1999].

Just to complete this section, we want to mention additional methods of the Thread class.

static void sleep(long t) This method stops the execution of a thread for t milliseconds.

boolean isAlive() Another useful method is the isAlive() method, which returns true, if the thread is
still “running”. Do not confuse this with the boolean isActive() method of the Applet class,
which returns true, if the applet is somewhere still executing (executing code between the start()
and the stop() method.).

static Thread currentThread() This returns the thread object of the current thread.

static int activeCount() Returns how many threads are running.

There are many other methods, but some of them are already depreciated as of Java 2 (e.g. suspend(),
stop(), resume(), etc.), because they introduce serious problems. Depreciated means, you should
avoid using these functions, because they might not be available in a new Java version anymore.

There is one last remark you should keep in mind: Never restart a thread!! The reason for this is a bit
involved and the interested reader should refer to [Oaks und Wong, 1999].

MPI and Java

??????????? which interface MpiJava ???

10.4 Master Equations, Entropy, and the H–Theorem
In this section we are going to discuss in more detail the connections between the master equation and the
entropy. In particular we want to derive the H–theorem, which we have already mentioned in the previous
section. The starting point of our discussion will be a master equation of the general form

3
3t

P x t
x

w x x P x t w x x P x t (10.3)

10.4. MASTER EQUATIONS, ENTROPY, AND THE H–THEOREM 343

and we want to discuss separately two cases: (i) the transition matrix is symmetric, i.e.,

w x x w x x ;

(ii) the condition of detailed balance is satisfied

w x x Peq x t w x x Peq x t (10.4)

Case (i): The Symmetric Transition Matrix

It is evident that for these case the master equation (10.3) can be written in the simplified form

3
3t

P x t
x

w x x P x t P x t (10.5)

Thus, at equilibrium we have

d
dt

P 0

since w x x 0. Hence,

Peq x t const
1
/

(10.6)

where

/
x

1

In order to demonstrate that equilibrium is approached in a unique way we choose the following H–
function

H t
x

P x t lnP x t

We now calculate explicitely the time derivative of the above defined function. For notational ease we
replace the sum by an integral. We find

d
dt

H t dx
3
3t

P x t lnP x t
3
3t

lnP x t

Because of the conservation of the norm of the probability density

dxP x t 1

the time derivative of the H–function is

d
dt

H t dx
3
3t

P x t lnP x t

Now, we insert the master equation (10.5) into the above expression and obtain

d
dt

H t dx dx w x x P x t P x t lnP x t

dx dx w x x P x t P x t lnP x t

344 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

The second line in the above expression has been obatined by changing the names of the integration vari-
ables. Exploiting the symmetry of the transition matrix, the time derivative of the H–function can be written
in the symmetrized form

d
dt

H t
1
2

dx dx w x x P x t P x t lnP x t lnP x t

Recalling that

a b lna lnb 0

for a, b 0 it follows for the time derivative of the H–function that

d
dt

H t 0

The H–function decreases monotonically as a function of time during the time evolution of the Matkov
process. The H–function gets stationary when the condition

P x t Peq x ; Peq x Peq x

is satisfied for each pair of states x and x , which are connected by nonvanishing transition matrix elements.
If the set of the states x does not decay into two or more independent subsets, the equilibrium is uniquely
characterized by the form (10.6).

Case (ii): Detailed Balance

Case (ii) is of course more general than case (i). In order to investigate this second case we choose the
following H–function

H t dxp x t ln
P x t
Peq x

(10.7)

and show that again the H–theorem holds, i.e.,

d
dt

H t 0

To this end we define a new matrix, say

w̄ x x w x x Peq x (10.8)

which becasue of the property of detailed balance (10.4) is symmetric. With the help of the definition
(10.8) we can write the master equation in the form

3
3t

P x t dx w̄ x x
P x t
Peq x

P x t
Peq x

Inserting this form of the master equation in the definition of the H–function (10.7) we can show in a form
analgous to the previous subsection

d
dt

H t
1
2

dx dx w̄ x x
P x t
Peq x

P x t
Peq x

ln
P x t
Peq x

ln
P x t
Peq x

0

If the system is ergodic, after some time it reaches the equlibrium

P x t Peq x

10.5. NONEQUILBRIUM THERMODYNAMICS 345

and the H–function assumes its minimal value. the H–function (10.7) has two important properties. The
special form of the H–function allows the proof of a H–theorem also for the Boltzmann equation. The
interesting point is taht the Boltzmann equation itself being a nonlinear equation for the distribution in a 6
dimensional one–partice phase space is not a master equation. However, the linareised Boltzmann equation
is a master equation.

The function H is an addtitive quantity. Consider two independent systems with states x and y and
probability densities p x and q y . We regard the two systems as a combined system with states x y
and probability density p x q y . Then the H–functional of the combined system is the sum of the H–
functionals of the two subsystems

dx dyP x Q y ln
P x Q y

Peq x Qeq x
dxP x ln

P x
Peq x

dxQ x ln
Q x

Qeq x

Thus, H is an exstensive quantity.
Because of these two important properties one could like to identify H with the entropy of the second

Hauptsatz of thermodynamics. However, it is important to keep in mind, that the H–functional we intro-
duced is a functional of a nonequilibrium distribution, whereas the the thermodynamic entropy is defined
for a system at equilibrium. The nonequilibrium H functional allows therefore a generalization of the
thermodynamic entropy

S kH Seq

where k is Boltzmann’s constant and Seq is a constant term, which is independent of p x . At equilibrium
H 0, so that Seq is the thermodynamic entropy.

10.5 Nonequilbrium Thermodynamics
10.5.1 Balance Equations of Fluid Dynamics
In classical theoretical physics the dynamics of fluids is described with the help of the balance equations
of nonequlibrium thermodynamics for the mass, the momentum, and the energy. These balance equations
are derived under the assumption, that in a small volume element of the bulk of the fluid mass, momentum,
and energy are in a local thermal equilibrium. Evidently, if one considers the molecular structure of a fluid,
one has to regard the mass, the momentum, and the energy density as mean value of stongly fluctuating
microscopic quantities. These fluctuations are neglected in the purely macroscopic classical description.

However, as we have seen in the preceeding sections, fluctuations play a fundamental role in systems
out or approaching equilibrium. Typical situations in which fluctuations are of central importance in the
description of fluids occur near equilibrium in the form of small Gaussian fluctuations in the macroscopic
variables, these are the so–called hydrodynamic fluctuations, and the large non–Gaussian fluctuations in
the velocity filed of turbulent fluids.

For these reasons it seems natural to look for a stochastic, mesoscopic formulation of fluid dynamics.
On this macroscopic level we will have the same numbero f variables as in the macroscopic level of de-
scription. The dynamics of theses variables will no longer be deterministic but stochastic. The mesocopic
approach should satisfy four conditions:

(i) In the limit of vanishing fluctuations the equation of motion for the mean values of the stochastic
variables should be identical with the balance equations of fluid dynamics.

(ii) In a linear noise approximation we should obtain from the master equation defining the stochastic
process the linear Langevin equation of fluctuating hydrodynamics. In this way nonequlibrium thermodyn-
mics should be contained in the approach.

(iii) In the continuum limit the characteristci function of the stochastic process should generate the
complete hierarchy of coupled equations for the moments of the velocity fileds, which are known from
the theory of turbulence. In this way the master equation should describe correctly the the turbulent, non–
Gaussian fluctuations.

(iv) The mesoscopic formulation should lead to simple and efficient numerical alghorithms, which
should be vectrorizable and parlalleizable.

346 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

In the following we are going to investigate such a formulation for a very simple balance equation,
the one dimensional Burgers equation, which is the equation of motion for a one–dimensinal velocity field
v x t ,

The Burgers equation is a one–dimensional version of the Navier–Stokes equation. It is often used in
gas dynamics since it shows shock wave solutions, and as a simple model of turbulence.

10.5.2 The Denition of the Phase Space
In this subsection we define the space of states of the fluid. Once the accessible states of the fluid are known
it is possible to construct a master equation governing the probabilistic time evolution of the system.

The first step of the construction of an appropriate phase space consists in the division of physical
space into a number of cells centered at the points x$ which we label by an integer–valued index $ Z.
For the purpose of general (three dimensional) considerations it suffices to use cubic cells of size -l 3; in
practice, shape and size of the cells can be adapted to the confining geometry of the flow. Here the cells
are just one–dimensional intervals of length -l since we are considering one space dimensional examples
only. Depending on the physical situation under study the number of cells may be finite or infinite. In the
stochastic simulation this number is, of course, always finite and fluids of (practically) infinite size have to
be modelled by imposing suitable boundary conditions.

we now interpret the velocity field u x t appearing in the Navier–Stokes equation as an expectation
value of a discrete stochastic process N$

u t Z, i. e. we define

u x$ t -u N$
u t (10.9)

The above equation provides the connection between the macroscopic and the stochastic description of
fluid motion. Within the stochastic description the velocity is a time–dependent random variable N $

u , i. e.
a stochastic process governed by a master equation to be defined below. On the other hand, the velocity
on a macroscopic scale, that is on the scale accessible to standard experimental observation, is given by
an expectation value, and therefore obeys the deterministic Navier–Stokes equation. The velocity unit -u
has been introduced in order to obtain a discrete stochastic process N $

u . Thus it represents the size of the
smallest possible changes of the state of the fluid in the discretized phase space. This means that within our
description a positive value -u N$

u of the random velocity in the cell $ can be intepreted as the presence
of N$

u velocity particles each carrying the velocity -u. Correspondingly, a negative value -u N $
u is to be

interpreted as the presence of N$
u antiparticles of velocity. Defining the positive and negative part of N $

u
as

N$
u : N$

u N$
u 0

0 N$
u 0 N$

u : 0 N$
u 0

N$
u N$

u 0 (10.10)

we write:

N$
u N$

u N$
u (10.11)

Thus we see that within our description the mesoscopic state of the fluid may be viewed as a many velocity
particle state and is completely fixed by specifying the number N $

u of velocity particles in each cell $.
Formally, the resulting phase space may be written as

6 N$
u

$ Z
N$

u Z (10.12)

10.5.3 The Construction of the Master Equation
In order to obtain the master equation for the Burgers model we proceed as follows: We show explicitly
how stochastic processes can be constructed whose expectation values obey the corresponding terms in
the Burgers equation equation. These stochastic processes are defined by a master equation which is a

10.5. NONEQUILBRIUM THERMODYNAMICS 347

time evolution equation for the joint probability distribution P P N $
u ; t in the phase space 6. From this

probability distribution the expectation value for an arbitrary observable O may be evaluated according to

O
N$

u

O P N$
u ; t (10.13)

Viscosity as a Many–Particle Random Walk

In this section we are going to describe viscous fluids within our stochastic approach. In the simplest cases,
the Navier–Stokes equation containing only viscous forces reads

3u
3t

1
R
32u
3x2 (10.14)

As in the preceeding section we want to define a stochastic process N $
u t in such a way that its expectation

value

u x$ t -u N$
u t (10.15)

obeys the diffusion–like equation (10.14).
It is well–known that the probability distribution #$ t , $ Z, of a one particle random walk fulfills in

the continuous limit a diffusion equation. More precisely, let us consider a continuous time random walk
in one dimension. The probability distribution #$ t obeys the following master equation

3#$
3t

d #$ 1 2#$ #$ 1 d const. (10.16)

It is easy to see from the above equation that in the limit of infinitesimal small random steps,

#$ t # x -l $ t (10.17)

the probability distribution # x t is a solution of the diffusion equation

3#
3t

D
32#
3x2 D : lim-l 0 -l2 d (10.18)

The formal analogy of the diffusion equation (10.18) with the one dimensional Navier–Stokes equation
(10.14) is obvious. However, there is a fundamental difference between these two equations. The diffusion
equation (10.18) describes the time evolution of a probability distribution which is normalized and positive
definite. In contrast, the one dimensional Navier–Stokes equation (10.14) is an equation for an expectation
value which might be negative and not normalizable. Thus, the stochastic process underlying (10.14) can
not be described by a one particle random walk. Therefore, one has to leave the one particle picture.
To this end, we consider a collection of independent velocity particles each of which is governed by Eq.
(10.16). The state of the resulting collective system Kampen [1992] is characterized by the set of numbers
N$

u of velocity particles in all cells $. Thus, in this many–particle picture one disregards the identity of the
individual particles and is merely interested in the occupation numbers N $

u of particles in each cell. (Note,
that in the one–particle picture the state of the system is completely specified by giving the location $ of
the particle.)

In the framework of the many particle picture the one–particle density # $ t is replaced by the many
particle probability distribution P N $

u ; t . The master equation defining the time evolution of P N $
u ; t can

be obtained from the one–particle master equation by multiplying the one–particle transition rates with the
occupation number N$

u of cell $,

3P
3t

1
R-l2

$

N$ 1 P N$ 1 1 N$ 1 N$ 1 P N$ 1 N$ 1 1

348 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

Introducing the shift–operators E$ which operate on an arbitrary function F of the random varoables as

E$F N$
u F N$

u 1
E 1
$ F N$

u F N$
u 1 (10.19)

we can write the master equation as

3P
3t

1
R-l2

$

E 1
$ 1E$ 1 N$

u E 1
$ 1E$ 1 N$

u P (10.20)

where -l denotes the cell size. Since the expectation value of N $
u is a statistical guess of the one–particle

density at the point $ the velocity field (10.15) obeys the diffusion equation (10.14) as required. Until now
we implicitly restricted our attention to the collective random walk of positive velocity particles. Obviously,
to be consistent with our general picture of particles and antiparticles of velocity we have to generalize the
master equation describing viscous fluids in order to allow for the correct treatment of antiparticles of
velocity. Since a one–particle jump to the right is equivalent to a one–antiparticle jump to the left and
vice versa, the master equation (10.20) has to be modified in the following way: In order to describe the
diffusion of antiparticles the numbers N $

u N$
u are replaced by their absolute values N $

u N$
u and

the shift operators E 1
$ 1E$ by E$ 1E 1

$. Consequently, if both particles and antiparticles of velocity are
present the master equation can be written:

3P
3t

1
R-l2

$

E 1
$ 1E$ 1 N$

u E 1
$ 1E$ 1 N$

u P

1
R-l2

$

E$ 1E 1
$ 1 N$

u E$ 1E 1
$ 1 N$

u P

: Ad P (10.21)

where we introduced the “diffusion operator” A d .
Having presented the master equation defining the time evolution of the stochastic process N $ we now

demonstrate that our requirement explained in subsection x is satisfied, i.e., we show that the expectation
value of the stochastic process -u N$ indeed obeys a discrete form of the Burgesr equation containg only
viscous forces..

More generally, let us first derive an appropriate form for the time evolution equation of the expectation
value of an arbitrary function F N$ of the stochastic variables. To this end, we consider an expression
of the form E 1

$ 1E$F . Recalling that the expectation value involves a multiple sum over all integers
N$ it is easy to show with the help of the definition of the operators E$, Eq. (10.19), and by shifting the
summation indices appropriately that the following equation holds

E 1
$ 1E$F F (10.22)

This equation is true, of course, for any other product of shift operators appearing in our master equation
(10.21). Thus, these products of shift operators when acting on a function of the stochastic variables
have no influence on its expectation value and can, within the angular brackets, always be replaced by the
identity. Since the time evolution operatorA contains the above products of shift operators only in the form
EE 1 , Eq. (10.22) implies that

A F
N$

A F P 0 (10.23)

Introducing the commutator (the function F being regarded as a multiplication operator)

F A : FA A F (10.24)

10.5. NONEQUILBRIUM THERMODYNAMICS 349

and exploiting relation (10.23), equation (??) takes the form

3
3t

F F A (10.25)

Thus, the time derivative of the expectation value of a function F of the stochastic variables is equal to
the expectation value of the commutator F A . For the special case of the first moments of the stochastic
process -uN$ we have

-u
3
3t

N$ -u N$ A (10.26)

In order to determine the commutator N$ A we proceed by evaluating some useful the commutators. Let
us begin with the calculation of the commutator Ns Es by looking at how it operators on an arbitrary
function of the stochastic variables. Let us consider first the case that s s . We have

Ns Es F Ns NsEsF Ns EsNsF N$

NsF Ns 1 Ns 1 F Ns 1
EsF Ns

For the case that s s the calculation is similar

Ns Es F Ns NsEs F Ns Es NsF N$

NsF Ns Ns 1 NsF Ns Ns 1
0

Summarizing, we can write

Ns Es Es-s s

Similarly, we can show that

Ns E 1
s E 1

s -s s

Another useful commutator is

Ns E 1
s 1Es Ns E 1

s 1 Es E 1
s 1 Ns Es

E 1
s 1Es -s 1 s E 1

s 1Es -s s

E 1
s 1Es -s 1 s -s s

In order to determine the equation of motion for the expecation value of random velocity variable we thus
have to compute first the commutator N$ Ad . We obtain

N$ Ad
1

R-l2
s

Ns E 1
s 1Es Ns Ns 1

Ns E 1
s 1Es Ns Ns 1

1
R-l2

s

E 1
s 1Es -s 1 s -s s Ns Ns 1

E 1
s 1Es -s 1 s -s s Ns Ns 1

1
R-l2 E 1

s Es 1 Ns 1 Ns E 1
s 1Es Ns Ns 1

E 1
s Es 1 Ns 1 Ns E 1

s 1Es Ns Ns 1

Before taking the expecation value of the above expression we have to notice that wheneever in the sum
N$ the shift operators appear on the extreme left they can be replaced by 1. This is easy to show with

350 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

the help of the definition of the shift operators and by shifting appropriately the summation indices. With
the help of this trick it is evident that we have

-u
3
3t

N$)
-u
-l2 N$ 1 2N$ N$ 1 N$ 1 2N$ N$ 1 (10.27)

Recalling that N$ N$ N$ the time evolution equation of the first moment of the stochastic process N$
can be written as

-u
3
3t

N$)
-u
-l2 N$ 1 2N$ N$ 1 (10.28)

Since, the equation is linear in N$ we have, of course, v$ -u N$ and hence we immediately obtain a
discretized version of the Burgers equation without convective terms.

3
3t

v$ t)
v$ 1 2v$ v$ 1

-l2
1
2

v2
$ 1 v2

$ 1
2 -l

(10.29)

which, in turn, leads to Burgers’ equation (??) in the continuum limit -l 0.

The Nonlinear Convection Term

Up to now, we have shown how to deal with viscous diffusion. However, it is of great importance to include
within the stochastic theory nonlinear interactions which, for example, enter the Navier–Stokes equation
through the nonlinear inertial term u ; u. It is a remarkable fact that interpreting the inertial term as a
nonlinear convection term a stochastic interpretation in terms of one–particle jumps can be found. As will
be shown here, again, the many–particle picture is absolutely necessary.

As before we are looking for the stochastic process N $
u t the expectation value of which obeys Burgers’

equation. Obviously, the stochastic process underlying the nonlinear convection term is fundamentally
different from the previously introduced stochastic processes: It is not a random walk of a collection of
independent particles. The construction of the Hydrostochastic form of the convection term will now be
given heuristically within the many particle picture.

Let us consider what happens in a specific cell $ occupied by N $
u 0 velocity particles. Within the

stochastic approach convection may be modelled as a jump process from cell $ to cell $ 1 . Thus,
the stochastic process is completely specified by giving the transition rates for these elementary jumps.
The probability for the jump of a specific particle situated in cell $ is proportional to the velocity at $
and, hence, proportional to the number of velocity particles in cell $. Consequently, the total transition
rate is proportional to the number of pairs of velocity particles in the cell $, i. e. to N $

u N$
u 1 2. On

dimensional grounds the proportionality factor is found to be -u -l (note that transition rates have the
dimension of an inverse time) and we obtain the following master equation for the convection of velocity
particles:

3P
3t

-u
-l

$

E 1
$ 1E$ 1

1
2

N$
u N$

u 1 P (10.30)

It can be shown that the above form of the master equation for the convection term leads to a dis-
cretization of the differential operator u3 3x which is of order -l. In order to obtain a discretization of this
differential operator which is of order -l 2 the following symmetrized form of the master equation will be
used:

3P
3t

1
2
-u
-l

$

E 1
$ 1E$ 1

1
2

N$
u N$

u 1 P

$

E 1
$ E$ 1 1 1

2
N$

u N$
u 1 P

: Ac P (10.31)

10.5. NONEQUILBRIUM THERMODYNAMICS 351

where we abbreviated the effect of the right hand side by defining the “convection operator” A c.
Constructing Eq. (10.31) we assumed that N $

u 0. The general master equation describing both the
presence of velocity particles and antiparticles can now easily be derived. Let us assume, that cell $
contains N$

u N$
u antiparticles of velocity. The elementary jumps of the antiparticles can be obtained

from those of the particles of velocity by simply reversing the directions of the jumps, i. e. all antiparticles
jump to the left. However, since the process of an antiparticle jumping to the left is identical to the process
of a particle jumping to the right, the above master equation describes the combined convection of particles
and antiparticles of velocity if N$

u is replaced by N$
u .

Summarizing the master equation of the Burgers model reads
3P
3t

Ad Ac P

1
R-l2

$

E 1
$ 1E$ 1 N$

u E 1
$ 1E$ 1 N$

u P

1
R-l2

$

E$ 1E 1
$ 1 N$

u E$ 1E 1
$ 1 N$

u P

1
2
-u
-l

$

E 1
$ 1E$ 1 1

2
N$

u N$
u 1 P

$

E 1
$ E$ 1 1 1

2
N$

u N$
u 1 P (10.32)

Let us now demonstrate how the macroscopic equation may be derived from the above equation. To this
end we have only to compute the commutator N$ Ac with the help of (??)

Ns Ac
-u
4-l

s

Ns E 1
s 1Es N2

s N2
s 1

-u
4-l

s

E 1
s 1Es -s 1 s -s s N2

s N2
s 1

-u
4-l

E 1
s Es 1 N2

s 1 N2
s E 1

s 1Es N2
s N2

s 1

for sufficiently small -u the number of velocity particles N $
u becomes large one expects that fluctuations

are small and, therefore, that the approximation

N$
u

2
N$

u
2 (10.33)

holds to a sufficient degree of accuracy. Eq. (??) may then be written as an equation for u $,

3u$
3t

1
2

u2
$ 1 u2

$ 1
2-l

1
R

u$ 1 2u$ u$ 1
-l2 (10.34)

Obviously, this equation is nothing but the discretized version of the Burgers equation (??) which emerges
in the continuum limit -l 0. In deriving the above macroscopic equation for the expectation value u $
we neglected, of course, all higher moments of the stochastic process N $

u . As is well–known the above
master equation, defining a nonlinear stochastic process, leads to an infinite dimensional system of coupled
differential equations for the moments. Thus, in order to derive more rigorously from our master equation
the macroscopic equation and to investigate the dynamics and influence of fluctuations one has to employ
a more systematic method. Such a method is provided by the well–known /–expansion Kampen [1992].
Applying this expansion to the master equations of Hydrostochastics reveals that, in fact, the macroscopic
equations are equivalent to the equations of fluid dynamics. Furthermore, it can be shown that within the
linear noise approximation the fluctuations superimposed on the macroscopic dynamics can be identified
with those fluctuations derived from the theory of fluctuating hydrodynamics ?. Thus, the stochastic dy-
namics implied by our master equation formulation can, indeed, be given a clear physical interpretation as
we will see in one of the next setions.

352 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

10.5.4 The Stochastic Simulation Algorithm
It is the aim of this section to show that the master equation formulation of the Burgers equation naturally
leads to very transparent numerical simulation algorithms. Basically, the stochastic simulation method
generates an ensemble of realizations of the stochastic process N$. From this ensemble the physical
quantities of interest, e. g. the mean velocity field and correlation functions, can then be evaluated as
ensemble averages. The stochastic simulation algorithm consists of 3 basic steps:

1. Let us assume that at time t the state of the system is given by N$ t . In the first step, the time t ,
of the next transition is determined. Our algorithm uses a stochastic time step , to be evaluated as follows.
Obviously, the total transition rate W N$ t is given by

W N$

M

$ 0

w$

M

$ 0

2)
-l2 N$

1
2
-u
-l

N2
$ (10.35)

where w$ denotes the rate for those transitions in which N$ is changed. Consequently, the probability for
the next transition to occur somewhere in the system within the infinitesimal time step d, is W N$ t d,.
The total transition rate W determines the waiting time distribution, i. e. the probability distribution of the
time , the system remains in the state N$ t . In the stochastic simulation the random number , which
determines the time for the next transition to occur can be obtained by the inversion method with the help
of the following formula

,
1

W N$ t
ln9 (10.36)

where 9 is a uniformly distributed random number on the interval 0 1 .
2. Having determined the transition time we have to perform a specific transition, i.e. we have to

determine the new state N$ t , of the system. To this end, one chooses according to the relative
probabilities w$ W a certain cell. Once a definite cell $, say, has been chosen the new state of the system
is to be selected from the following possibilities:
1. Diffusive transitions:

N$ N$ s
N$ 1 N$ 1 s probability

)
-l2

N$

w$

N$ N$ s
N$ 1 N$ 1 s probability

)
-l2

N$

w$

where

s 1 for N$ 0
1 for N$ 0

2. Convective transition:

N$ N$ 1
N$ 1 N$ 1 1 probability

-u
4-l

N2
$ N2

$ 1
w$

Note that each of these transitions corresponds to one of the 5 terms in our master equation (??) and that
the transition probabilities given above add up to 1. Performing one of these transitions yields the new state

N$ t , .
3. The complete trajectory of the stochastic process can be determined by repeating the above scheme

until a desired final time is reached. Finally, by generating a large number S of realizations of the stochastic
process N$ t j, j 1 S one can evaluate the interesting quantities as ensemble averages.

3. The complete trajectory of the stochastic process can be determined by repeating the above scheme
until a desired final time is reached. Finally, by generating a large number S of realizations of the stochastic
process N$ t j, j 1 S one can evaluate the interesting quantities as ensemble averages.

10.5. NONEQUILBRIUM THERMODYNAMICS 353

The simplicity of the above scheme makes clear that the numerical simulation of a stochastic process
defined by our multivariate master equation is straightforward. In the following we shall exemplify this by
showing some stochastic simulations of shock wave solutions of Burgers equation.

Originally Burgers proposed the equation (??) as a simple one–dimensional model of homogeneous
turbulence. The main features of the Navier–Stokes equations are retained in the above equation. The
nonlinearity has the same structure as in the Navier–Stokes equation, and the dissipative term is also of
the same type. Only the pressure term is missing, so that one has to expect a relaxation of turbulence with
time. The model also lacks an equation of continuity, so that it describes in practice a one–dimensional
compressible flow. The Burgers equation is particularly appealing because the analytical solutions of the
initial value problem is known Whitham [1974]. These solutions represent, for example, nonlinear wave
solutions like shock waves and “humps”. Thus, Burgers’ equation is interesting as it makes possible the
study of the interplay of nonlinear propagation and viscous diffusion.

Shock Waves

The first example we are going to treat is the shock wave solution of Burgers’ equation. The shock wave
solution is obtained for the following initial condition

u x 0 u0 x 1 x 0
0 x 0 (10.37)

The diffusion and the convection of this initial step are described by the following time–dependent solution

u x t
1

1 h x t exp R x t 2 2
(10.38)

where the function h x t is defined by

h x t
erfc R 4t x

erfc R 4t x t
(10.39)

The function erfc x is known as the conjugated error function, and is given by

erfc x
2
"

.

x

dy exp y2 (10.40)

As a first example, we depict in Fig. 1 a stochastic simulation of a shock wave for the Reynolds number
R) 1 100 which develops from the step function initial condition

v x 0 1 x 0
0 x 0 (10.41)

This initial condition corresponds to the initial configuration of the stochastic variables N $ given by

N$ 0 int 1 -u $ 0
0 $ 0 (10.42)

In Fig. 1 the exact analytical solution of Burgers’ equation is represented by the lines, whereas the symbols
mark the results of the simulation. Fig. 2 shows a simulation obtained for the same initial condition and
the same numerical parameters; however, the Reynolds number was set equal to infinity, i. e.) 0. This
figure clearly demonstrates the great stability of the stochastic simulation algorithm.

As a final example we depict in Fig. 3 the simulation of the confluence of two shocks propagating with
different velocities to the right (R 100). Again the analytical solution for this problem Whitham [1974]
is indicated by the lines.

354 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

10.6 Hydrodynamic Fluctuations
In section 2 we proposed a master equation for the stochastic description of Burgers’ equation. This master
equation has been constructed in such a way that the expectation value of the stochastic process (10.9)
obeys in the limit -u 0, i. e. in the limit of large numbers N$, a discretized version of Burgers’
equation. By some stochastic simulations we demonstrated in Section 3 that this yields a simple numerical
approach to fluid dynamical computations. Of course, the stochastic description by a master equation
implies fluctuations around the macroscopic value of the velocity field governed by Burgers’ equation.

In this section we present a systematic analysis of the stochastic process N$. This analysis proves that, in
fact, the macroscopic equation pertaining to N$ is nothing but Burgers’ equation. Furthermore, it is shown
that the fluctuations around the macroscopic velocity which are predicted by our master equation, are those
expected from the theory of hydrodynamicfluctuations. The basic tool of the following analysis will be the
well–known van Kampen’s /–expansion Kampen [1992]. Basically, this method is a consistent expansion
of the master equation in powers of a small quantity / 1 which has to be identified from the physical
parameters of the model under study. The first step in our analysis is, thus, to identify the appropriate
small quantity in our master equation which allows for an /–expansion. Recall that the construction of the
master equation was based on the equation

v x$ t -u N$ (10.43)

This equation connects the stochastic process N$ to the mean velocity v x$ t which obeys Burgers’ equa-
tion. It follows from this equation that -u 1 is approximately proportional to N$. Since in the limit of
infinitely large numbers N$ one expects a well–defined macroscopic law to emerge from the mesoscopic
formulation the quantity -u turns out to be an appropriate small parameter for the /–expansion, i.e., in the
following we study the limit

/ 1 -u 0 (10.44)

Assuming that the fluctuations of N$ are small it is natural to split the stochastic process -uN$ into two parts:
the first part is a macroscopic variable v$ which satisfies a deterministic evolution equation, whereas the
second part w$ -u1 29$ describes the small stochastic deviations from this deterministic time evolution:

-uN$ v$ -u1 29$ v$ w$ (10.45)

In this equation v$ is introduced as an intensive quantity which is independent of -u. Also, the new
stochastic variable9$ is assumed to be independent of -u to leading order. This means that equation (10.45)
expresses the expectation that the fluctuations w$ around the macroscopic values are proportional to -u 1 2.

We are now in the position to perform the /-expansion along the lines given by van Kampen. Since
the new stochastic variables are 9$ we first introduce the transformed probability distribution <

P N$; t -u M 1 2< 9$; t (10.46)

for which we have

3P
3t

3<
3t

$

3<
39$

d9$
dt

3<
3t

-u 1 2

$

3<
39$

3v$
3t

(10.47)

We also expand the shift operators in powers of -u:

E$ 1 -u1 2 3
39$

1
2
-u

32

392
$

(10.48)

Inserting these expressions into the master equation for < and collecting terms of the same order in -u we

10.6. HYDRODYNAMIC FLUCTUATIONS 355

finally obtain (including terms of order -u0):

3<
3t

1
-u

$

3v$
3t

1
2

v2
$ 1 v2

$ 1
2-l

)
v$ 1 v$ 1 2v$

-l2
3<
39$

$

3
39$

)
9$ 1 9$ 1 29$

-l2
v$ 19$ 1 v$ 19$ 1

2-l
<

1
2

$µ

D$µ
32

39$39µ
< (10.49)

Let us explain the meaning of the various terms in this equation. The first sum is of order -u 1 2 and,
therefore, diverges in the limit -u 0 unless one imposes the condition that the expressions within the
curly brackets of the first sum vanishes for each $. In fact, until now the dynamics of the macroscopic
variables v$ has not been specified. Thus, in order to obtain a well–defined /–expansion we now require
that the curly brackets of the first sum vanishes identically. This condition is easily seen to be equivalent to
the requirement that v$ obeys the (discretized) Burgers equation (??).

The remaining terms of the master equation for< constitute a linear Fokker–Planck equation which has
an obvious physical interpretation. The drift term of this Fokker–Planck equation is obtained by linearizing
Burgers’ equation around the macroscopic solution v $. Thus, the drift term governs the time evolution of
small perturbations of the macroscopic variable.

The last term of equation (10.49) describes a multivariate diffusion process with diffusion matrix

D$µ : d$ d$ 1 -$µ d$-$ 1 µ dµ-$ µ 1 (10.50)

where

d$:)
ṽ$ ṽ$ 1

-l2
ṽ2
$ ṽ2

$ 1
4-l

ṽ$: -u N$ (10.51)

Since the above Fokker–Planck equation is linear its general solution represents a nonstationary multivari-
ate Gaussian process which is completely characterized by its mean values and variances. The latter are
defined by

9$ t 9µ t D9 9$9µ < 9$; t (10.52)

where

D9 : d90 d91 d92 d9M (10.53)

It is now straightforward to write down the dynamic equations for the correlation function 9 $9µ . This
will be done for the stochastic variables w$ -u1 29$ which represent the random velocity fluctuations.
Since the equations of fluctuating hydrodynamics are usually formulated in a continuous notation we write
in the continuum limit -l 0:

w$ t wµ t w y t w x t (10.54)

We then obtain from the Fokker–Planck equation (10.49)

3
3t

w y t w x t)
32

3y2
3
3y

v y t w y t w x t

)
32

3x2
3
3x

v x t w y t w x t

-uDyx (10.55)

356 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

where we introduced the continuum limit of the diffusion matrix D $µ as

Dyx : 2)
3
3x

ṽ
3
3x
-l - y x (10.56)

It should be noted that the /–expansion as presented above is based on the assumption that the stochastic
process -uN$ can be decomposed into a macroscopic part of order 1 and a fluctuating part of order -u 1 2.
This implies, of course, that we assume that the solutions of the macroscopic equation are stable. This
condition guarantees that the fluctuations around the macroscopic variables are bounded Kampen [1992].

Let us make an important remark. Our master equation (??) describes both the viscous friction and
the nonlinear inertial term of Burgers’ equation by stochastic processes. Thus, our stochastic formulation
treats the nonlinear convection term and the dissipative viscosity term on an equal footing. However, it
is important to note that in the continuum limit the nonlinear term does not contribute to the fluctuations.
This fact can be clearly seen from the continuum limit (10.56) of the diffusion matrix (10.50).

he above equation for the correlation function ww now allows to identify the physical meaning of
the mesoscopic velocity and length scales -u and -l which have been introduced within our stochastic
description. Let us consider the stationary and spatially homogeneous velocity fluctuations around a state
with constant macroscopic velocity v and mass density 1. With these assumptions we obtain the following
stationary solution (neglecting boundary effects):

w y t w x t s ṽ-u -l- y x (10.57)

This explicit expression for the velocity fluctuations enables us to relate the mesoscopic quantities -u
and -l to thermodynamic state variables. Recall, that the stochastic process -uN$ t represents, from a
microscopic viewpoint, the average velocity of the real fluid particles of mass m in cell $. We now assume
the fluid particles in each cell to be in a local thermodynamic equilibrium state. It is then natural to identify
the magnitude of the variance of the random velocity w with the thermodynamic fluctuations %u 2 of this
average velocity.

From the Maxwell distribution at temperature T we obtain

%u 2 kT
1-l

(10.58)

where k denotes Boltzmann’s constant. Thus we have

ṽ-u
kT
1-l

(10.59)

Equation (10.59) represents a type of fluctuation–dissipation relation of our mesoscopic theory. Note that
both mesoscopic parameters, -u and -l, enter the equation (10.59). Thus, -u is fixed once a length scale -l
has been chosen. Of course, the magnitude of -l is determined by the very assumptions of local thermo-
dynamic equilibrium which usually enter non–equilibrium thermodynamics: On the one hand, -l has to be
chosen in such a way that the number of fluid particles contained in a cell is large enough to allow for a
reasonable thermodynamic description. On the other hand, the size of -l is limited by the requirement that
the variation of the various quantities over the cells is small compared to the magnitude of these quantities.

We have seen that the dynamics of the velocity fluctuations is governed by a linear Fokker–Planck
equation. Of course, the dynamics of the fluctuations can be described as well by an equivalent Langevin
equation. Invoking our fluctuation–dissipation relation (10.59) the Langevin equation for the stochastic
variable w x t reads

3
3t

w x t)
32

3x2 v
3
3x

w x t
3
3x
5 x t (10.60)

Interpreting 5 x t as the random momentum flux density, equation (10.60) is precisely of the form of the
corresponding equation in fluctuating hydrodynamics (see, for example, ??). The correlation function of

10.7. HOMOGENEOUS TURBULENCE: THE BURGERS EQUATION 357

the random momentum flux can be determined from the diffusion matrix and our fluctuation–dissipation
relation. One finds

5 y t 5 x t
2kT)
1

- y x - t t (10.61)

Let us sum up what has been achieved in this section. By means of the simple example of Burg-
ers’ equation we have established the connection of our multivariate master equation description of fluid
dynamics to the theory of fluctuations in fluids. In other words, the master equation describes both the
macroscopic dynamics and the dynamics of the fluctuations.

10.6.1 Couette Flow and Poiseuille Flow

10.7 Homogeneous Turbulence: The Burgers Equation
10.7.1 Homogeneous Turbulence
A turbulent fluid is usually characterized by irregular and disordered temporal variations of the velocity
field at each point of the fluid and conversely the variations of the velocity vary irregularly from point to
point at a fixed time. Up to now there is no complete quantitative theory of turbulence, but there are well
accepted qualitative results.

The energy cascade The main aspect of the tutbulence problem is the presence in a turbulent fluid of dif-
ferent length scales. Looking at a turbulent fluid you will notice vortices with small and large dimensions.
For very large Reynolds number there are very turbulent elements on very large and on very small length
scales. The main role is played be the large vortices, which are of the order of magnitude of the exterior
dimensions of the system under consideration. Lets call thius legth scale l. The order of magnitude of the
velocity is of the order of the variation of the mean velocity %u on the length scale l. The large turbulent
elemnetns contain most of the kinetic energy of the turbulent fluid. Small vortices contain only a small part
of the kinetic energy.

The general properties of a given flow are characterized by the Reynolds number

R
ul
)

Abetter characterization is found by introducing Reynolds numbers for turbulent elements of different size.
Denoting by $ the size of the turbulent element, by v $ the order of magnitude of the velocity in that turbulent
element we can define

R$
v$=
)

For large values of R also the the Reynolds numbers R$ of the large vortices ($ l) are large. Since a large
R implies a small), we may follow that t he viscosity does not play a great role for the large turbulent
elements. Hence it is not to be expected that dissipation will play a great role for these vortices. Viscosity
will affect only the smallest vortices (=0), for which R$ 1. And it is here that the dissipation takes place.

The physical picture of what is going on in a turbulent fluid id due to L. Richardson (1922). The energy
flows from the large vortices into the small ones. This process occurs without dissipation. The energy flow
is disspipated inthe smallest vortices, where kinetic energy is converted into heat. To make this process
”stationary” it is of course necessary to add energy in the large length scales. This picture is called the
energy cascade. As we will see, a major aspect of theis picture is that all quantities involved which belong
to turbulent elements with $ $0 do not depend upon the viscosity.

The orders of magnitude of the energy dissipation The enenergy dissipation is defined as the mean
energy which is dissipated pro time unit and pro mass unit in a turbulent fluid. The order of magnitude of
the energy dissipation may be detremined with the help of quantities which are characteristic of the large

358 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

vortices. These quantities are the density of the fluid 1, the linear dimesnion l, and the velocity %u. Only a
combination of these 3 quantities has the dimension of a dissipation (J kg s m 2 s3

(
%u 3

l
A turbulent flow can be described qualitative as a fluid with a turbulent viscosity) turbo). The only
dimensionless quantity with the dimension of aviscosity which may be constructed with the help of 1, %u,
and l is

)turbo l%u

We have
)turbo
)

R

Note that)turbo gets larger for increasing Reynolds number R. In other words, we can write the energy
dissipation also in the form

(
%u
l

2

in accordance with the usual defuinition of viscosity.

The law of Kolmogorow Now we want to look at the properties of the turbulence on the length scale
$, which is assumed to be small with respect to l. We look at the bulk of the fluid and neglect boundary
effects. In these domain it is safe to assume that the turbulence is homogeneous and isotropic. We will now
deduce with the help of similitartity arguments some fundamental results (Kolmogorow, 1941; Obuchow,
1941). The local properties of the turbulence are determined for l $ $ 0 by $, the density 1 and the
enegy diisipation (. The local properties do not depend upon l and %u, which are relevant for the flow as a
whole. Furthermore, they do not depend upon).

The variation of the velocity v$ on a length scale $ is easily guessed by considering that the only
quantity with the dimension of avelocity which can be formed with the help of 1, (and $ is

v$ ($ 1 3 (10.62)

This is the famous law of Kolmogorow andd Obuchow, which states that the variation of the velocity on a
distance of he order $ is proporional to the cubic root of the distance $. The velocity v $ may be regarded
as the gelocity of a turbulent element of dimension $.

Similarly, the variation of the velocity at a fixed point during the time ,, which is smaler then charac-
teristic time scale T l u may be estimated by inserting u, for $ in the above equation to be

v, (, u 1 3 (10.63)

With the help of

(
%u 3

l
Eqs. (10.62) and (10.63) can be brought in the following suggestive form

v$
%u

$
l

1 3

and, respectively,

v,
%u

,
T

1 3

The two above expression make evident the self–similarity property of local turbulence. The characteristic
quantities differ only through the scales in which the length and the times are measured.

10.7. HOMOGENEOUS TURBULENCE: THE BURGERS EQUATION 359

Estimation of the dimensions $0 of the smallest turbulent elements On the smallest ”inner” length
scale lambda0 of turbulence the effects of dissipation are important. The local Reynolds number we find

R$
v$ $
)

%u $4 3

)l1 3 R
$
l

4 3

The smallest length scale $0 can be found from the condition that R$ 1. We find

$0
l

R3 4

It is important to notice, that the inner dimesnions of the turbulence gets rapidly smaller for increasing
Reynolds number. This point has to be kept in mind when performing numerical simulations of the turbu-
lence. For large values of the Reynolds number a very large number of degrres of freedom is necessary.
This makes the direct simulation of turbulence one of the hardest numerical problems.

The spectral form of the law of Kolmogorow and Obuchow Summarizing, we have seen that the
turbulence aloows for the distinction of threee well–defined regions. The energy range, ist the region for
which $ l. In this region the the greatest part of the kinetic energy is stored. In the dissipation range,
$ $0, the kinetic energy is dissipated. In between for $0 $ l we have the inertial range. For large
Reynolds numbers the energy and the dissipation range are clearly separate. The results of these subsection
apply essentially to the inertial range.

It is costumary to look at results obtained in this subsection in the Fourier space. To this end we replace
the dimension of the fluctation $ by the wave number k

k
1
$

By E k dk we denote the kinetic energy pro unit mass contained in the interval k k dk . The dimension
of E k is

E k
m3

s2

The only combination of (and k with this dimension is

E k (2 3k 5 3

The above expression is the famous spectral form of the law of Kolmogorow. The relation to the law we
already know is made evident by integration

.

k

E k dk (2 3k 2 3 ($ 2 3 v2
lambda

10.7.2 Burgerlence
As a one dimensional model of turbulence we want to consider now the Burgers equation. There is a formal
similarity between the statistical equations for the Navier–Stokes equations and the Burgers equation. To
establish this relation we consider random solutions u x t , which are stationary random functions of x.The
mean energy density u2 2 decays according to the expression

(
3
3t

1
2

u2)
3u
3x

2)
u2

$2) 02

The quantity omega 3u 3x is analogous to the voricity. The arguments put forward by Kolmogorov which
are at the basis of the cascade process do not depend upon the dimension of the system under investigation

360 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

and hence they should also apply to Burgerslence. Unfortunately, this is not the case. This can be seen by
expoliting the fact that the Burgers equation has a well–known ecaxt solution

u x t 2)
3
3x

log>

where

3>
3t

);2>

So it can be shown, that the spectru of Burgerslence is given by the expression

E k
2)2"

4l
cosech2 ")k

2u

For k u), we have

E k
2u2

"l
k 2

and for k u)

E k
2)"

l
exp ")k u

which shows the exponential cut–off due to the vscosity. For Burgerslence the dissipation spectra k 2E k
is constant until the cut–off by viscous decay.

10.7.3 The Master Equation Formulation
We now turn to the master equation formulation of the problem. The stochastic process -uN $ t obviously
represents a homogeneous Markov process. Therefore, it is characterized by the probability distribution
P N$ t and a transition probability P2,

P2 P2 N 2
$ t2 N 1

$ t1 (10.64)

which only depends on the difference t2 t1 of the time arguments. The consistency condition connecting
the probability distribution and the transition probability reads

P N$ t
N 0
$

P2 N$ t N 0
$ 0 P0 N 0

$ (10.65)

where P0 N 0
$ denotes the initial probability distribution.

In a first step, we derive the equation of motion for the characteristic functional M z $ t pertaining
to the stochastic process -uN$ t ,

M z$ t : exp i-u-l
$

zN F N$ (10.66)

where we have introduced the function

F N$: exp i-u-l
$

zN

The equation of motion for M contains, of course, the small mesoscopic scales -u and -l introduced within
our discrete master equation formulation. This is due to the fact that the phase space 6 underlying our

10.7. HOMOGENEOUS TURBULENCE: THE BURGERS EQUATION 361

master equation formulation is discrete in space as well as velocity space. We therefore assume that in the
limit of small -u the stochastic process

u$ t : -uN$ t

represents a process which, to leading order, does not depend on -u. Thus, the second step consists of an
expansion of the equation of motion for M with respect to this mesoscopic velocity scale -u. In a third
step we then perform the continuum limit -l 0. The leading order term of this expansion turns out to
be identical to the functional Hopf equation. Furthermore, the physical origin of the next to leading order
term is discussed and the mesoscopic scales are related to physical quantities.

The equation for M can be written in the following form which is appropriate to infer the structure of
the continuum limit:

3M
3t

)
$

-l
z$ 1 z$ 1 2z$

-l2
1
-l
3M
3z$

i
2

$

-l
z$ 1 z$ 1

2-l
i-u-l

4
z$ 1 z$ 2

-l
z$ z$ 1

2

-l
1
-l2

32M
3z2
$

)-u-l
2

$

-l
z$ 1 z$ 2

-l2
z$ 1 z$ 2

-l2 u$ F (10.67)

It It is now easy to perform, at least formally, the continuum limit of this equation. In the limit -l 0 the
set of numbers z$ turns into a function z x . Correspondingly, M z$; t becomes a functional M z x t
and ordinary derivatives with respect to z$ translate into functional derivatives:

1
-l

3
3z$

-
-z x

(10.68)

Moreover, we assume that the process u$ t converges in the continuum limit to a well–defined stochastic
process u x t . Hence, we obtain to leading order in -l:

3
3t

M z x t) dx
32z
3x2

-M
-z x

i
2

dx
3z
3x

-2M
-z x 2

)-u-l dx
3z
3x

2
u x ei dy z y u y (10.69)

Performing an integration by parts finally yields

3
3t

M z x t dx z x
i
2
3
3x

-2M
-z x 2)

32

3x2
-M
-z x

)-u-l dx
3z
3x

2
u x ei dy z y u y (10.70)

Eq. (10.70) represents, including terms of order -u-l, the equation of motion for the characteristic func-
tional M of the stochastic process defined by our multivariate master equation. Comparing Eq. (10.70) with
(??) we conclude that the leading order terms in Eq. (10.70) are identical to the Hopf functional equation.
The next to leading order term which may formally be written as

c z x t)-u-l dx
3z
3x

2 1
i

-
-z x

M z x t (10.71)

is of order -u and, therefore, vanishes as -u 0. Note that including the case of external random
stirring forces Novikov derived a generalization? of Hopf’s functional equation in which an additional
term appears which is of similar structure as c z x t . However, in our formulation the functional c z x t
does not represent the effect of external random forces. We shall see below that it has a different physical
interpretation.

362 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

Eq. (10.70) constitutes the central result of this section. It leads to the conclusion that in the limit
-u 0 the stochastic process -uN$ t underlying our master equation is equivalent to the stochastic
process v x t of the Hopf formulation.

From a mathematical point of view this conclusion has to be taken with caution since we did not actually
prove that the probability distribution P converges to P H in a rigorous mathematical sense. In order to give
such a proof one would first have to construct an embedding of the phase space of smooth velocity fields
into the discrete phase space 6 underlying our master equation. Secondly, a measure in the space of
probability distributions is required which allows for a precise definition of convergence. A mathematical
investigation along these lines must show, in particular, how the two limiting procedures -u 0 and -l 0
have to be performed in order to guarantee certain smoothness properties of the stochastic process u x t .

However, in spite of these mathematical questions we can give the above statement concerning the
relation between the random processes -uN$ t and v x t the following meaning. On a purely formal level,
the Hopf equation (??) as well as Eq. (10.70) for the characteristic functional of our multivariate stochastic
process may be regarded as a condensed way of writing the hierachy of dynamic moment equations. In
fact, functional differentiating M H and M with respect to z x one may derive the differential equations
for the (equal time) n–point correlation functions for both processes. It is clear from the structure of the
functional equations (??) and (10.70) that the resulting equations for the two stochastic processes differ
from each other by the corresponding functional derivatives of the correction term c z x t . As one can see
from the definition of c z x t all n–th order functional derivatives of c z x t , taken at n different points,
exist. Thus, the equations for the n–point correlation functions differ by a term which vanishes as -u 0.
This is the precise formulation of the conclusion we draw from our investigation.

It should be clear that the functional derivatives of c z x t induce -–function type singularities. This
is due to the fact that for small but finite -u the continuum limit -l 0 of -uN$ does not lead to a
smooth stochastic process. We will see below that this is to be expected physically.

As an example, we derive the equation for the 2–point correlation function

u y t u x t
1
i2

-2

-z y -z x
M z t

z 0

Following the usual procedure we obtain

3
3t

u y t u x t
1
2

u y t
3
3x

u2 x t
1
2

u x t
3
3y

u2 y t

)
32

3x2
32

3y2 u y t u x t
-2

-z y -z x
c z t

z 0
(10.72)

Apart from the last term the above equation is identical to that one which is obtained from the functional
Hopf equation, of course. The functional derivatives of c z t yield the expression (ṽ u , see Eq. (??))

-2

-z y -z x
c z t

z 0
2)-u-l

3
3x

ṽ
3
3x
- y x (10.73)

which is obviously of order -u.
From a physical point of view there is another reason why mathematical considerations concerning the

continuum limit of -uN$ t are only of secondary importance. The reason is that the functional c z x t can
be given a clear physical meaning. As we will now show interpreting this term as the influence of thermal
fluctuations one is forced to fix the product -u-l to a finite value. Thus, questions about the existence of
the continuum limit are only of mathematical interest.

We now demonstrate that the term (10.73) can be interpreted as a random stress induced by thermal
fluctuations. To this end, we assume in the following that the stochastic process is spatially homogeneous;
in particular this implies ṽ const. Introducing the Fourier transformation of the velocity,

u x t
1
L

k

eikxuk t (10.74)

10.7. HOMOGENEOUS TURBULENCE: THE BURGERS EQUATION 363

where k 2"n L and n Z, we obtain from Eq. (10.72)

3
3t

ukuk
q

iq uk qukuq c c

2)k2 ukuk 2)ṽ-u-lLk2 (10.75)

Recall that ukuk is proportional to the kinetic energy Ek (per unit mass) pertaining to the mode k,

Ek
1

2L
ukuk (10.76)

The convolution sum on the left hand side of equation (10.75) results from the inertial term of Burgers’
equation and obviously couples the different modes. The first term on the right hand side represents the
decay of the hydrodynamic modes due to viscous friction whereas the last term is the Fourier transform
of (10.73). At small scales, that is for large k, the influence of the inertial term may be neglected. It is then
easy to see that the effect of the last term in (10.75) is to slow down the exponential decay of the energy of
the mode k until, finally, the stationary value

Es
k

1
2

ṽ-u-l (10.77)

is reached. One can go one step further by requireing that the kinetic energy E s
k of each stationary mode

is equal to its thermodynamic equilibrium value at temperature T . This requirement leads to the relation
Es

k
1
2 kBT 1 (1 denotes the fluid density and kB the Boltzmann constant) which implies:

ṽ-u-l
kBT
1

(10.78)

The fluctuation–dissipation type relation (10.78)fixes -u-l to a finite value. This means that from a physical
viewpoint the continuum limit makes no sense. This fact should have been clear from the begining since
below a certain length scale the assumption of thermodynamic equilibrium and, thus, a description by
macroscopic variables only is no longer possible.

It should be clear that performing stochastic simulations of our master equation (see the next sec-
tion) it is by no means necessary to choose parameters in such a way that the fluctuation–dissipation rela-
tion (10.78) is satisfied. In other words, it is not necessary to take into account all scales ranging from the
hydrodynamic to the thermodynamic degrees of freedom. On the contrary, in view of practical applications
another interpretation of the finite mesoscopic scales -l and -u is possible. This interpretation is based on
the fact that any experimental measurement is characterized by some finite resolution in velocity space as
well as position space. It is therefore natural to assume that

-l %l ṽ-u '2

where %l denotes the spatial resolution and '2 the variance of the error of velocity measurements. Fixing
the mesoscopic parameters in this way, it might be possible to simulate directly that velocity field which is
actually measured.

10.7.4 The Stochastic Simulation
In this subsection we will apply the stochastic simulation method described above to Burgers’ model of
homogeneous turbulence. Let us first precisely define the initial conditions and the physical quantities
which have been used in our calculations.

Within our discrete description the 2–point correlation function is defined by

Q µ t :
1
L

M

$ 0

-l -u2 N$ µN$ µ 0 1 2 M (10.79)

364 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

where, assuming spatial homogeneity, a space average has been taken. The expectation value is, as ex-
plained in the preceding subsection, evaluated by averaging over the ensemble which is generated by the
stochastic simulation. Computing the Fourier transform of the correlation function we obtain the energy
spectrum Ek defined in Eq. (10.76). The total kinetic energy E is evaluated by means of the expression

E t
1

2L
$

-l -u2 N2
$ (10.80)

which leads to the energy dissipation rate (t Ė. The initial random velocity is given by a superposition
of N 1000 randomly chosen modes,

u0 x
1
N

N

i 1
Ai coskix Bi sinkix w x (10.81)

Here, ki 2"ni (we choose L 1) and the ni denote identically distributed random integers with distribution
function P n P n . The amplitudes Ai and Bi are also identically distributed and independent real
random numbers with zero mean and with variance

AiA j BiB j A2-i j

Furthermore, we add a small fluctuating field w x with zero mean and correlation function w y w x
w2-l- y x , where w2 ṽ-u. It follows from these conditions that the initial field (10.81) is homogeneous
and that the initial energy spectrum is given by Ek 0 A2P k 2" 2 ṽ-u-l 2. In our calculations we
used A2 1 3 and a Poisson–distributed initial spectrum

P n 1
1
2

µn

n!
e µ (10.82)

where n 0 1 2 3 M 1 2 and P 0 0. We shall characterize this initial condition by two
Reynolds numbers: First, we define an integral Reynolds number based on the total length L 1 and
rms–velocity U u2 1 2,

RL :
U L
)

(10.83)

Second, we introduce a Taylor–Reynolds number by

R= :
U =
)

(10.84)

where the Taylor microscale = is defined by

2"
=

2
:

(0
2)E 0

k2Ek 0
Ek 0

2"
L

2
µ 1 2 µ (10.85)

The following simulations have been performed along the lines described in subsection A employing
the parameters -u 5 10 4 and M 1 1024. The random initial configuration is given by

N$ 0 int
u0 x$
-u

(10.86)

In Fig. 1 we depict one realization of the stochastic process u$ -uN$ for three different times and)
5000 1. As can be seen from the figure, the initial field developes a typical sawtooth structure consisting
of smooth increasing ramps followed by sharp shocks.

In Fig. 2 we show the energy dissipation rate (as function of time for) 3000 1 (RL 1733,
R= 156), and) 5000 1 (RL 2821, R= 253). In both cases the results have been obtained by
averaging over 100 realizations. Fig. 2 clearly demonstrates the characteristic features of the dissipation:

10.7. HOMOGENEOUS TURBULENCE: THE BURGERS EQUATION 365

During a short initial period in which the dissipation rate is small, shocks form and the resulting steep
velocity gradients lead to a strong enhancement of the dissipation rate. The latter reaches a maximum at a
characteristic time t 0 02. During the post shock period the dissipation rate can be clearly seen to become
independent of the viscosity as is predicted by analytical considerations??.

Finally, we shall discuss the energy spectrum. Fig. 3 shows Ek as obtained from the Fourier transform
of the correlation function Q µ t . Again, the expectation value has been evaluated by averaging over
100 realizations of the stochastic process. We show the energy spectrum for three different times and for
the viscosity) 5000 1 (RL 2821, R= 253). As can be seen, a k 2 power law behaviour appears
which represents the universal inertial range of Burgers’ model. In order to demonstrate the accuracy of
the stochastic simulation method over the whole range of wavenumbers we compare the spectrum at time
t 0 06 with the analytical result given by Saffman?

Ek W sinh 2 dk 2" (10.87)

Saffman derived this expression for the Burgers model by assuming that the small scale structure is given
by periodic trains of shocks. Note that Ek as given by (10.87) approaches for dk 2" 1 the form
Ek 4"2W dk 2. The energy scale W and the dissipation length d which depend on the large scale
properties of the initial condition have been determined from our data by comparison with the limiting
behaviour of the Saffman result for large wavenumbers (E k 4W exp dk "). We find W 0 85 10 5

and d 0 0078. As demonstrated in Fig. 3 the agreement between the analytical result (10.87) with our
stochastic simulation is excellent over the whole range of wavenumbers.

366 CHAPTER 10. NONEQUILIBRIUM MONTE-CARLO METHODS

Bibliography

Farley, Jim. Java, Distributed Computing. The Java Series. O’Reilly, 1998.

Jancel, R. Foundations of Classical and Quantum Statistical Physics. Clarendon Press, Oxford, 1969.

Kac, M. und Logan, J. Fluctuations. In E. W. Montroll und J. L. Lebowitz, Herausgeber, Fluctuation
Phenomena. North–Holland, Amsterdam, 1987.

van Kampen, N. G. Fundamental Problems in Statistical Mechanics of Irreversible Processes. In E. G. D.
Cohen, Herausgeber, Fundamental Problems in Statistical Mechanics, Seiten 173–202. North–Holland,
Amsterdam, 1962.

Kampen, N.G. Van. Stochastic Processes in Physics and Chemistry. Elsevier Science Publishers B.V.,
Amsterdam, zweite Auflage, 1992.

Kreuzer, H. J. Nonequlibrium Thermodynamics and its Statistical Foundations. Clarendon Press, Oxford,
1981.

McLennan, James A. Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, Englewood
Cliffs, 1989.

Oaks, Scott und Wong, Henry. Java Threads. The Java Series. O’Reilly, zweite Auflage, 1999.

Prigogine, I. Non–Equilibrium Statistical Mechanics. Interscience Publishers, New York, 1962.

Whitham, G.B. Linear and Nonlinear Waves. Pure and applied Mathematics. John Wiley & Sons, 1974.

367

368 BIBLIOGRAPHY

Part V

Applications

369

Chapter 11

Quantum Mechanics Simulations

???

371

372 CHAPTER 11. QUANTUM MECHANICS SIMULATIONS

Chapter 12

Risc Management

???

373

374 CHAPTER 12. RISC MANAGEMENT

Appendix A

Summary of Java

A.1 Basic Syntax

Documentation /** Javadoc documentation */
Comments /* Multi Line Comments */

// Single Line Comments
Constants final int i = 10;
Logical Operators !, &, |, ˆ, &&, ||
Integer data types byte, short, int, long
Floating point data types float, double
Arithmetic Operators +, -, *, /, %, ++, --
Bitwise Operators ˜, &, |, ˆ, <<, >>, >>>
Comparison Operators <, <=, >, >=, ==, !=
Flow Control if () ... else ...

... ? ... : ...
switch() { case .. : ...; break; default: ... }
for (.. ; .. ; ..) { ...; }
while () { ...;}
do { ...; } while ();

A.2 Structure of a Java program

The general structure of a Java program is:

package

import

Classes

Interfaces

375

376 APPENDIX A. SUMMARY OF JAVA

Class

Class / Instance variables and constants

main method

Other methods

Local variables and constants

Program code

init method

Local variables and constants

Program code

Local variables and constants

Program code

Figure A.1: The class structure of a Java program, either application or an applet.

A.3 The java.lang.System class

Type Field Description
PrintStream err standard error output stream
InputStream in standard input stream
PrintStream out standard output stream
modifier method explanation
static void arraycopy(Object src, int sr-

cpos, Object dst,
int dstpos, int length)

Copies an array from the specified source array, be-
ginning at the specified position, to the specified po-
sition of the destination array.

static void exit(int status) Terminates the currently running Java Virtual Ma-
chine.

static void setErr(PrintStream err) Reassigns the ”standard” error output stream.
static void setIn(InputStream err) Reassigns the ”standard” input output stream.
static void setOut(PrintStream err) Reassigns the ”standard” output output stream.
static String getProperty(String key) get the system property defined by the given key.
static String setProperty(String key) set the system property defined by the given key.

A.4. MATHEMATICS 377

A.4 Mathematics
A.4.1 The java.lang.Math class

A.4.2 JNL

A.4.3 JavaSci

A.4.4 Others

A.5 Random Numbers

A.6 Keyboard input and Screen Output

A.7 File I/O

A.8 Ptplot

A.9 AWT

A.10 Conversions and Casting

A.11 Threads

A.12 Printing

A.13 Modiers

abstract method A method having no body of code. The code can be implemented in a subclass.
abstract class A class containing at least one abstract method
interface A class, where all defined methods are abstract by default. No variables only constants are possible in interface

A.14 Debugger

A.15 JDE and Emacs

378 APPENDIX A. SUMMARY OF JAVA

Appendix B

Listings and Tables

B.1 Listing of the ShowTrace.java Program

/
ShowTrace . java

/
5 / HTML a p p l e t code =”ShowTrace . c l a s s ” width =200 h e i g h t =200

/ a p p l e t /HTML /
import j ava . a p p l e t . ;

publ i c c l a s s ShowTrace extends Apple t
10 publ i c ShowTrace ()

System . out . p r i n t l n ("Constructor !") ;

publ i c s t a t i c void main (S t r i n g [] a rgs)
System . out . p r i n t l n ("Main Method !") ;

15
publ i c void i n i t ()

System . out . p r i n t l n ("Init Method !") ;

publ i c void s t a r t ()
20 System . out . p r i n t l n ("Applet Start Method !") ;

publ i c void s top ()
System . out . p r i n t l n ("Applet Stop Method !") ;

25

379

380 APPENDIX B. LISTINGS AND TABLES

Appendix C

Listings for the Exercises

C.1 Listings for Chapter 1
C.1.1 Calcualtion of ", Exercise 1.1
The plain program without graphical display:

/ A Monte Carlo method to e s t i m a t e PI (Hi t or Miss)

we draw random numbers in a square and check how many
f a l l i n t o a c i r c l e od r a d i u s 1 .

5
S p e c i f y the number of p o i n t s on the command l i n e /

import j ava . u t i l . Random ;
10

/ i f you want to c a l u l a t e the error of the sample , you
have to save the e s t i m a t e s in an array . /

publ i c c l a s s P i C a l c p l a i n
15 / / i n i t i a l i z e the g e n e r a t o r

publ i c s t a t i c Random rand = new Random () ;
publ i c s t a t i c long num ;
publ i c s t a t i c double i n s i d e =0;

20 publ i c s t a t i c void main (S t r i n g [] a rgs)
/ / check for command l i n e arguments
i f (a rgs . l e n g t h ! = 1)

System . e r r . p r i n t l n (" Error: no or wrong number of "
+" arguments specified!") ;

25 System . e x i t (1) ;

num = I n t e g e r . p a r s e I n t (a rgs [0]) ;

/ / C a l c u l a t i o n
30 i n s i d e =0;

for (in t i = 0 ; i num ; i ++)
double x = rand . nextDouble () ;
double y = rand . nextDouble () ;
double r =Math . s q r t (Math . pow (x ,2)+ Math . pow (y , 2)) ;

35 i f (r 1)
i n s i d e ++;

381

382 APPENDIX C. LISTINGS FOR THE EXERCISES

i n s i d e /= num ;
40 i n s i d e =4;

/ / o u t p u t of r e s u l t s in s h e l l
System . out . p r i n t l n (" Calculated Pi using "+num+" points!") ;
System . out . p r i n t l n (" The exact value is : " +Math . PI) ;

45 System . out . p r i n t l n (" The estimate for PI is : "+ i n s i d e) ;
System . out . p r i n t l n (" The exact error is : " +Math . abs (Math . PI i n s i d e)) ;

Now the graphics version of the above program:

/ A Monte Carlo method to e s t i m a t e PI (Hi t or Miss)

we draw random numbers in a square and check how many
f a l l i n t o a c i r c l e od r a d i u s 1 .

5
S p e c i f y the number of p o i n t s on the command l i n e /

import j ava . u t i l . Random ;
10 import j ava . awt . ;

import j ava . awt . even t . ;

/ i f you want to c a l u l a t e the error of the sample , you
have to save the e s t i m a t e s in an array . /

15
publ i c c l a s s P i C a l c extends Frame

/ / i n i t i a l i z e the g e n e r a t o r
publ i c s t a t i c Random rand = new Random () ;
publ i c s t a t i c long num ;

20 / / s e t l a y o u t of window
publ i c s t a t i c BorderLayou t mylayout = new BorderLayou t (1 0 , 1 0) ;
publ i c s t a t i c in t width =600;
publ i c s t a t i c in t h e i g h t =600;
publ i c s t a t i c double i n s i d e =0;

25
publ i c s t a t i c void main (S t r i n g [] a rgs)

/ / check for command l i n e arguments
i f (a rgs . l e n g t h ! = 1)

System . e r r . p r i n t l n (" Error: no or wrong number of "
30 +" arguments specified!") ;

System . e x i t (1) ;

P i C a l c . num = I n t e g e r . p a r s e I n t (a rgs [0]) ;

35 / / c r e a t e a window and p l o t p o i n t s
Frame f = new Frame ("Calc Pi using Monte Carlo") ;
/ / Event to c l o s e the window and e x i t
f . addWindowLis tener (new WindowAdapter () / / Handle window c l o s e

publ i c void windowClosing (WindowEvent e) System . e x i t (0) ;
40) ;

/ / s i z e of window
f . s e t S i z e (width , h e i g h t) ;
/ / s e t a l a y o u t manager
f . s e t L a y o u t (mylayout) ;

C.1. LISTINGS FOR CHAPTER 1 383

45 / / P lo t a t e x t on the top bar of the window
f . add (new Label ("Calculate PI using Hit or Miss Method. "+

" To quit, close the window!") , "North") ;
/ / Create a drawing area for the p o i n t s
Drawing draw = new Drawing (f , width , h e i g h t) ;

50 / / add i t to window in the middle
f . add (draw , "Center") ;
/ / s e t the background co lor of the drawing panel
draw . se tBackground (Color . whi te) ;
/ / d i s p l a y i t a l l

55 f . show () ;

s t a t i c c l a s s Drawing extends Canvas
60 protec ted Frame frame ;

protec ted int width ;
protec ted int h e i g h t ;

publ i c Drawing (Frame frame , in t width , in t h e i g h t)
65 t h i s . f rame =frame ;

t h i s . width = width ;
t h i s . h e i g h t = h e i g h t ;

publ i c void p a i n t (Graph ics g)
70 / / C a l c u l a t i o n and p l o t p o i n t s :

/ / p l o t the q u a r t e r of a c i r c l e
g . s e t C o l o r (Color . red) ;
g . drawArc (width , 0 , 2 width ,2 h e i g h t , 0 , 9 0) ;
g . drawArc (width 1,1 ,2 width ,2 h e i g h t , 0 , 9 0) ;

75 g . drawArc (width 2,2 ,2 width ,2 h e i g h t , 0 , 9 0) ;
g . s e t C o l o r (Color . b l ack) ;

/ / C a l c u l a t i o n
P i C a l c . i n s i d e =0;

80 for (in t i = 0 ; i P i C a l c . num ; i ++)
double x = rand . nextDouble () ;
double y = rand . nextDouble () ;
double r =Math . s q r t (Math . pow (x ,2)+ Math . pow (y , 2)) ;
/ / p l o t the p o i n t

85 x = width ;
y = h e i g h t ;
g . drawLine ((in t) x , (in t) y , (in t) x , (in t) y) ;
i f (r 1)

P i C a l c . i n s i d e +=1;
90

P i C a l c . i n s i d e /= P i C a l c . num ;
P i C a l c . i n s i d e =4;

95 / / p l o t the q u a r t e r of a c i r c l e again
g . s e t C o l o r (Color . red) ;
g . drawArc (width , 0 , 2 width ,2 h e i g h t , 0 , 9 0) ;
g . drawArc (width 1,1 ,2 width ,2 h e i g h t , 0 , 9 0) ;
g . drawArc (width 2,2 ,2 width ,2 h e i g h t , 0 , 9 0) ;

100 g . s e t C o l o r (Color . b l ack) ;

/ / o u t p u t of r e s u l t s in s h e l l

384 APPENDIX C. LISTINGS FOR THE EXERCISES

System . out . p r i n t l n (" Calculated Pi using "+ P i C a l c . num+" points!") ;
System . out . p r i n t l n (" The exact value is : " +Math . PI) ;

105 System . out . p r i n t l n (" The estimate for PI is : "+ P i C a l c . i n s i d e) ;
System . out . p r i n t l n (" The exact error is : " +Math . abs (Math . PI P i C a l c . i n s i d e)) ;

110

C.1.2 Photoabsorption, Exercise 4.1

%%% Program P h o t o a b s o r p t i o n
%%%

c l e a r ;
5

%% Number of s l a b s
N= i n p u t (’ Number of s l a b s (1 0 0) ? ’) ;

%% T r a n s m i s s i o n p r o b a b i l i t y
10 p= i n p u t (’ T r a n s m i s s i o n p r o b a b i l i t y (0 . 5) ? ’) ;

%% Number of p a r t i c l e s i n c i d e n t a t the b e g i n n i n g
Npar t = i n p u t (’ I n i t i a l number of p a r t i c l e s i n c i d e n t (1 0 0 0 0) ? ’) ;

15
t = cput ime ;
P a r t i c l e s (1)= Npar t ;
for i =2: N+1,

%% Slow Vers ion
20 %random = rand (Npar t , 1) ;

%for j =1: Npar t ,
% i f (random (j) p)
% Npar t = Npar t 1;
% end

25 %end
%% Fas t Vers ion
Npar t =Npar t sum (rand (Npar t ,1) p) ;
P a r t i c l e s (i)= Npar t ;

end
30 d i sp (s p r i n t f (’ E lapsed CPU Time : % f ’ , cput ime t))

semi logy (P a r t i c l e s) ;

C.1.3 Monte-Carlo-Intgegration
Standard Routine

%% Program Standa rd Monte Car lo I n t e g r a t i o n
%%

c l e a r ;
5

ensembles = i n p u t (’ How many ensembles ? ’) ;
sampl ing = i n p u t (’ Sampling s t e p s i z e ? ’) ;

C.1. LISTINGS FOR CHAPTER 1 385

N= i n p u t (’ How many x v a l u e s ? ’) ;

10 %%% P a r a m e t e r s for t he f u n c t i o n to be i n t e g r a t e d
% e x a c t r e s u l t , i f known
e x a c t = pi / 4 ;
% x i n t e r v a l
xmin =0; xmax =1;

15 d e l t a x =xmax xmin ;

e r r o r (1 : ensembles)=0 ;
t (1 : ensembles +1)=0;
t (1)= cput ime ;

20 for j =1: ensembles ,
sum func =0;
x =(rand (N, 1) d e l t a x)+ xmin ;
for i =1: N,

sum func =sum func + func (x (i)) ;
25 end

i n t e g r a l (j)= sum func / N;
i f (rem (j 1, sampl ing)==0)

e s t i m a t e (j)= mean (i n t e g r a l (1 : j)) ;
e r r o r (j)= s td (i n t e g r a l (1 : j)) / s q r t (j) ;

30 t (j)= cput ime ;
end

end
t (ensembles +1)= cput ime ;
e s t i m a t e (ensembles +1)= mean (i n t e g r a l) ;

35 e r r o r (j +1)= s td (i n t e g r a l) / s q r t (j +1) ;

d i sp (s p r i n t f (’ n E s t i m a t e d I n t e g r a l i s : % f + % f ’ , e s t i m a t e (ensembles +1) , s td (i n t e g r a l) / s q r t (ensem
di sp (s p r i n t f (’ Exact r e s u l t : % f ’ , e x a c t))
d i sp (s p r i n t f (’ n D i s t a n c e to e x a c t r e s u l t : % f ’ , e x a c t e s t i m a t e (ensembles + 1)))

40
% p l o t the r e s u l t v e r s u s ensemble s i z e
s u b p l o t (2 , 1 , 1) ;
p l o t (1 : sampl ing : ensembles +1,4 e s t i m a t e (1 : sampl ing : ensembles + 1)) ;
t i t l e (’ Es tma tes for t he i n t e g r a l us ing S tanda rd MCI’) ;

45 x l a b e l (’ ensemble s i z e ’) ;
y l a b e l (’ E s t i m a t i o n of PI ’) ;
hold on ;
p l o t ([1 ensembles + 1] , [4 e x a c t 4 e x a c t] , ’ r ’) ;
hold o f f ;

50
% CPU Time P l o t
s u b p l o t (2 , 1 , 2) ;
p l o t (1 : sampl ing : ensembles +1, t (1 : sampl ing : ensembles +1) t (1)) ;
t i t l e (’ CPU time e s t i m a t e ’) ;

55 x l a b e l (’ ensemble s i z e ’) ;
y l a b e l (’ CPU time in sec . ’) ;

% E r r o r P l o t s
% Standa rd D e v i a t i o n

60 f i g u r e ;
s u b p l o t (2 , 1 , 1) ;
p l o t (1 : sampl ing : ensembles +1, e r r o r (1 : sampl ing : ensembles + 1)) ;
hold on ; p l o t ([0 ensembles + 1] , [0 0] , ’ r ’) ; hold o f f ;
t i t l e (’ S tanda rd D e v i a t i o n a g a i n s t ensemble s i z e ’) ;

65 % d i s t a n c e to e x a c t r e s u l t

386 APPENDIX C. LISTINGS FOR THE EXERCISES

s u b p l o t (2 , 1 , 2) ;
p l o t (1 : sampl ing : ensembles +1, e x a c t e s t i m a t e (1 : sampl ing : ensembles + 1)) ;
hold on ; p l o t ([0 ensembles + 1] , [0 0] , ’ r ’) ; hold o f f ;
t i t l e (’ d i s t a n c e to e x a c t r e s u l t v e r s u s ensemble s i z e ’) ;

70

% E r r o r a g a i n s t CPU time
f i g u r e ;
p l o t (abs (e x a c t e s t i m a t e (1 : sampl ing : ensembles + 1)) , t (1 : sampl ing : ensembles +1) t (1)) ;

75 t i t l e (’ Accuracy v e r s u s CPU time ’) ;
y l a b e l (’ CPU Time ’) ;
x l a b e l (’ Accuracy ’) ;

Hit and Miss Method

%% Program H i t a n d M i s s
%%

c l e a r ;
5

ensembles = i n p u t (’ How many ensembles ? ’) ;
N= i n p u t (’ How many numbers ? ’) ;

%%% P a r a m e t e r s for t he f u n c t i o n to be i n t e g r a t e d
10 % e x a c t r e s u l t i f known

e x a c t = pi / 4 ;
% x i n t e r v a l
xmin =0; xmax =1;
d e l t a x =xmax xmin ;

15 % y i n t e r v a l
fmax =1; fmin =0;
d e l t a f =fmax fmin ;

d e l t a =[d e l t a x d e l t a f] ;
20

for j =1: ensembles ,
Hi t s =0;
for i =1: N,

y=rand (1 , 2) . d e l t a ;
25 i f (y (2) = func (y (1)))

Hi t s = Hi t s +1;
end

end
i n t e g r a l (j)= Hi t s / N;

30 end
e s t i m a t e =mean (i n t e g r a l) ;

d i sp (s p r i n t f (’ n E s t i m a t e d I n t e g r a l i s : % f + % f ’ , e s t i m a t e , s td (i n t e g r a l) / s q r t (ensembles)))
d i sp (s p r i n t f (’ Exact r e s u l t : % f ’ , e x a c t))

35 d i sp (s p r i n t f (’ n D i s t a n c e to e x a c t r e s u l t : % f ’ , e x a c t e s t i m a t e))

%% Program H i t a n d M i s s 2
%%

%
5 %% C a l c u l a t e for d i f f e r e n t number of p o i n t s

C.1. LISTINGS FOR CHAPTER 1 387

%
c l e a r ;
%%% P a r a m e t e r s for t he f u n c t i o n to be i n t e g r a t e d
% e x a c t r e s u l t i f known

10 e x a c t = pi / 4 ;
% x i n t e r v a l
xmin =0; xmax = 1 ; d e l t a x =xmax xmin ;
% y i n t e r v a l
fmax =1; fmin = 0 ; d e l t a f =fmax fmin ;

15

N= i n p u t (’ Up to how many p o i n t s (1 0 0 0 0) ? ’) ;
sampl ing = i n p u t (’ Sampling s i z e (5 0) ? ’) ;

20 i n t e g r a l (1 : N+ 1) = 0 ; t (1 : N+ 1) = 0 ; t s t a r t = 0 ; Hi t s =0;
for i =1: sampl ing : N+1,

t s t a r t = cput ime ;
Hi t s =sum (rand (i , 1) d e l t a x = (1 . / (1 + (d e l t a f rand (i , 1)) . ˆ 2))) ;
i n t e g r a l (i)= Hi t s / i ;

25 t (i)= cput ime t s t a r t ;
end

c l f ;
s u b p l o t (3 , 1 , 1) ;

30 p l o t (1 : sampl ing : N+ 1 , 4 . i n t e g r a l (1 : sampl ing : N+ 1)) ;
hold on ; p l o t ([1 N+ 1] , [4 e x a c t 4 e x a c t] , ’ r ’) ; hold o f f ;
x l a b e l (’ number of p o i n t s ’) ;
y l a b e l (’ E s t i m a t e of Pi ’) ;
t i t l e (’ Hi t and Miss Method for Pi us ing 1 r e a l i z a t i o n ’) ;

35
s u b p l o t (3 , 1 , 2) ;
p l o t (1 : sampl ing : N+1, e x a c t i n t e g r a l (1 : sampl ing : N+ 1)) ;
hold on ; p l o t ([1 N+ 1] , [0 0] , ’ r ’) ; hold o f f ;
x l a b e l (’ number of p o i n t s ’) ;

40 y l a b e l (’ E r r o r of the E s t i m a t e ’) ;

s u b p l o t (3 , 1 , 3) ;
p l o t (1 : sampl ing : N+1, t (1 : sampl ing : N+ 1)) ;
x l a b e l (’ number of p o i n t s ’) ;

45 y l a b e l (’ CPU time in seconds ’) ;

d i sp (s p r i n t f (’ n E s t i m a t e d I n t e g r a l i s : % f ’ , i n t e g r a l (N+ 1)))
d i sp (s p r i n t f (’ Exact r e s u l t : % f ’ , e x a c t))
d i sp (s p r i n t f (’ n D i s t a n c e to e x a c t r e s u l t : % f ’ , e x a c t i n t e g r a l (N+ 1)))

50
%% l e t the use r zoom i n t o the p l o t s
zoom on ;
d i sp (’ P res s a key when f i n i s h e d zooming ! ’) ;
pause ;

55 zoom out ; zoom of f ;

%
%% C a l c u l a t e for d i f f e r e n t number of ensembles
%

60 c l e a r ; f i g u r e ;
%%% P a r a m e t e r s for t he f u n c t i o n to be i n t e g r a t e d
% e x a c t r e s u l t i f known
e x a c t = pi / 4 ;

388 APPENDIX C. LISTINGS FOR THE EXERCISES

% x i n t e r v a l
65 xmin =0; xmax = 1 ; d e l t a x =xmax xmin ;

% y i n t e r v a l
fmax =1; fmin = 0 ; d e l t a f =fmax fmin ;

ensembles = i n p u t (’ How many r e a l i z a t i o n s (1 0 0 0) ? ’) ;
70 sampl ing = i n p u t (’ Sampling s i z e (2 5) ? ’) ;

N= i n p u t (’ How many numbers (3 0) ? ’) ;

t (1 : ensembles +1)=0;
e s t i m a t e (1 : ensembles +1)=0;

75 e r r o r (1 : ensembles +1)=0;

for j max =1: sampl ing : ensembles +1,
t s t a r t = cput ime ;
for j =1: j max ,

80 % Hit and Miss !
Hi t s =sum (rand (N, 1) d e l t a x = (1 . / (1 + (d e l t a f rand (N , 1)) . ˆ 2))) ;
i n t e g r a l (j)= Hi t s / N;

end
e s t i m a t e (j max)= mean (i n t e g r a l) ;

85 e r r o r (j max)= s td (i n t e g r a l) / s q r t (j max) ;
t (j max)= cput ime t s t a r t ;

end

d i sp (s p r i n t f (’ n E s t i m a t e d I n t e g r a l i s : % f + % f ’ , e s t i m a t e (ensembles +1) , s td (i n t e g r a l) / s q r t (ensem
90 d i sp (s p r i n t f (’ Exact r e s u l t : % f ’ , e x a c t))

d i sp (s p r i n t f (’ n D i s t a n c e to e x a c t r e s u l t : % f ’ , e x a c t e s t i m a t e (ensembles + 1)))

% p l o t r e s u l t s
s u b p l o t (3 , 1 , 1) ;

95 p l o t (1 : sampl ing : ensembles + 1 , 4 . e s t i m a t e (1 : sampl ing : ensembles + 1)) ;
hold on ;
p l o t ([1 ensembles + 1] , [4 e x a c t 4 e x a c t] , ’ r ’) ;
hold o f f ;
x l a b e l (’ number of r e a l i z a t i o n s ’) ;

100 y l a b e l (’ e s t i m a t i o n of Pi ’) ;
t i t l e (’ E s t i m a t i n g Pi us ing Hi t and Miss MCI ’) ;

s u b p l o t (3 , 1 , 2) ;
p l o t (1 : sampl ing : ensembles + 1 , 4 . e r r o r (1 : sampl ing : ensembles + 1)) ;

105 x l a b e l (’ number of r e a l i z a t i o n s ’) ;
y l a b e l (’ s t a n d a r d d e v i a t i o n ’) ;

s u b p l o t (3 , 1 , 3) ;
p l o t (1 : sampl ing : ensembles +1, t (1 : sampl ing : ensembles + 1)) ;

110 y l a b e l (’ cput ime in seconds ’) ;
x l a b e l (’ number of r e a l i z a t i o n s ’) ;

%% l e t the use r zoom i n t o the p l o t s
zoom on ;

115 d i sp (’ P res s a key when f i n i s h e d zooming ! ’) ;
pause ;
zoom out ; zoom of f ;

C.1.4 Euler Constant

C.1. LISTINGS FOR CHAPTER 1 389

%%% Dar t s Metho for c a l u l a t i n g e
%%%

c l e a r ;
5

N= i n p u t (’ How many r e g i o n s / throws ? ’) ;
board (1 : N)=0 ;

r e g i o n =round (rand (N, 1) (N 1))+1;
10 for i =1: N,

board (r e g i o n (i))= board (r e g i o n (i)) + 1 ;
end
N0=0; N1=0;
for i =1: N,

15 i f (board (i)==0)
N0=N0+1;

e l s e i f (board (i)==1)
N1=N1+1;

end
20 end

d i sp (s p r i n t f (’ n E s t i m a t i o n for e : % f ’ , N/ N0)) ;
d i sp (s p r i n t f (’ or us ing N1 : % f ’ , N/ N1)) ;

25 d i sp (s p r i n t f (’ n Exact s o l u t i o n : % f ’ , exp (1))) ;

C.1.5 The Standard Deviation

%%
%% Compare the d i f f e r e n t methods for t he v a r i a n c e
%%
c l e a r ; he lp v a r i a n c e ;

5
N= i n p u t (’ number of random numbers (1 5 0 0 0) : ’) ;
mean sample = i n p u t (’ mean of the sample (1 0 0) ? ’) ;
slow = i n p u t (’ Slow v e r s i o n = 1 (0) ? ’) ;
x=rand (N,1) 2 mean sample ;

10
xm=mean (x) ;
xs = s td (x) ˆ 2 ;

s td1 =sum ((x xm) . ˆ 2) / (N 1);
15 s td2 =sum (x . ˆ 2) / N xmˆ 2 ;

s td3 =0;
i f (slow = = 1)

for j =1: N
s td3 = s td3 +sum ((x (j +1: N) x (j)) . ˆ 2) ;

20 end
s td3 = s td3 / Nˆ 2 ;

end
s td4 =((N 1) s td1 (sum (x xm) ˆ 2) / N) / (N 1);

25
d i sp (s p r i n t f (’ mean va lue : % f ’ , xm)) ;
d i sp (s p r i n t f (’ median : % f ’ , median (x))) ;
d i sp (s p r i n t f (’ n s td () f u n c t i o n : %.20 f ’ , xs)) ;
d i sp (s p r i n t f (’ 1) d e f i n i t i o n : %.20 f ’ , s td1)) ;

390 APPENDIX C. LISTINGS FOR THE EXERCISES

30 d i sp (s p r i n t f (’ 2) moments : %.20 f ’ , s td2)) ;
d i sp (s p r i n t f (’ 3) no moments : %.20 f ’ , s td3)) ;
d i sp (s p r i n t f (’ 4) two pass fo rmula : % . 2 0 f ’ , s td4)) ;

C.2 Listings for Chapter 2
C.2.1 Random number generator check

%% Program Check random number g e n e r a t o r rand ()
%%
%% g e n e r a t e moments of uni form d i s t r i b u t i o n
%%

5 c l e a r ;

% i n p u t p a r a m e t e r s
num moments= i n p u t (’ How many moments of the d i s t r i b u t i o n (1 0) ? ’) ;
N= i n p u t (’ How many random numbers (5 0 0 0) ? ’) ;

10
% c r e a t e random numbers
random = rand (N, 1) ;

moment (1 : num moments)=0 ;
15 e r r o r (1 : num moments)=0 ;

% c a l c the moments and the s t a n d a r d d e v i a t i o n of moments
for i =1: num moments ,

moment (i)= mean (random (1 : N) . ˆ i) ;
e r r o r (i)= s td (random (1 : N) . ˆ i) / s q r t (N) ;

20 end

% p l o t the c a l u l a t e d moments and t h e i r e x a c t r e s u l t s
s u b p l o t (3 , 1 , 1) ;
p l o t (moment , ’ b + ’) ;

25 hold on ;
p l o t (1 : num moments , 1 . / (2 : num moments + 1) , ’ r ’) ;
hold o f f ;
t i t l e (’ Moments of the uni form d i s t r i b u t i o n ’) ;
s u b p l o t (3 , 1 , 2) ;

30 e r r o r b a r (moment , e r r o r) ;
t i t l e (’ s t a n d a r d d e v i a t i o n of the moments ’) ;
% His togram to check for d i s t r i b u t i o n
s u b p l o t (3 , 1 , 3) ;
h i s t (random , f l o o r (N/ 1 0 0)) ;

35 hold on ;
p l o t ([0 1] , [1 0 0 1 0 0] , ’ r ’) ;
hold o f f ;
t i t l e (’ His togram of the d i s t r i b u t i o n ’) ;

%
% Poker Tes t
%
% Test the random number g e n e r a t o r us ing the Poker game

5 %
c l e a r ; he lp P o k e r T e s t ;

% i n p u t p a r a m e t e r s

C.2. LISTINGS FOR CHAPTER 2 391

N= i n p u t (’ How many hands (2 0 0 0 0) ? ’) ;
10

t = cput ime ;
hands (1 : 5) = 0 ;
for i =1: N,

% give a hand
15 random = s o r t (f l o o r (rand (5 ,1) 14 eps) + 1) ;

% check for hands
compare =random (1) ;
anz =1;
anz max =1;

20 for k = 2 : 5 ,
i f (compare ==random (k))

anz =anz +1;
e l s e

compare =random (k) ;
25 i f (anz anz max)

anz max =anz ;
end
anz =1;

end
30 end

hands (anz max)= hands (anz max)+1 ;
end
d i sp (s p r i n t f (’ CPU time : % f ’ , cput ime t)) ;
d i sp (s p r i n t f (’ sum of a l l hands coun ted : % i ’ , sum (hands))) ;

35
% p l o t ba rg raph of r e s u l t and coun t s
f i g u r e (1) ;
bar (hands) ;
t i t l e (’ Poker t e s t for t he random number g e n e r a t o r ’) ;

40 max hands =max (hands) ;
for i =1:5

t e x t (i 0.3/ i , hands (i)+ max hands / 6 , s p r i n t f (’% i ’ , hands (i))) ;
end
a x i s ([0 6 0 4 / 3 max hands]) ;

45 x l a b e l (’ of a kind ’) ;
y l a b e l (’ number of hands ’) ;

% e x a c t p r o b a b i l i t i e s for Poker
e x a c t = [0 . 5 0 1 1 7 7 0 . 4 2 2 5 6 9 0 . 0 2 1 1 2 8 4 5 0 . 0 0 0 2 4 0 0 9 6 0 . 0] ;

50 f i g u r e (2) ;
p l o t (hands / N e x a c t , ’ b + ’) ;
hold on ;
p l o t ([0 6] , [0 0] , ’ r ’) ;
hold o f f ;

55 x l a b e l (’ of a kind ’) ;
t i t l e (’ e r r o r of the g e n e r a t e d hands ’) ;

C.2.2 Galton Board

%% Program Gal ton Board
%%

c l e a r ;
5

% i n p u t p a r a m e t e r s

392 APPENDIX C. LISTINGS FOR THE EXERCISES

s t a i r s = i n p u t (’ How many s t a i r s ? ’) ;
b a l l s = i n p u t (’ How many b a l l s ? ’) ;

10 % p r o b a b i l i t y a t the s t i c k s
p = 0 . 5 ;

p o s i t i o n (1 : b a l l s)=0 ;
for i =1: b a l l s

15 % C a l c u l a t e number of s t e p s to the l e f t
p o s i t i o n (i)= (s t a i r s +1) sum (rand (s t a i r s ,1) p) ;

end

%%%% p l o t the h i s t o g r a m of the r e s u l t s
20 h i s t (p o s i t i o n , 1 : s t a i r s +1) ;

h i s to max =max (h i s t (p o s i t i o n , 1 : s t a i r s + 1)) ;
hold on ;

%%%% p l o t the t h e o r e t i c a l r e s u l t :
25 % (the normal d i s t r i b u t i o n for numvber of s t a i r s to i n f i n i t y)

% we need t h e r e f o r e : the v a r i a n c e and the mean of the sampled da ta
% the mean i s j u s t (s t a i r s + 2) / 2 ,
% and the v a r i a n c e i s c a l u l a t e d us ing the sampled da ta , so t h a t the
% t h e o r e t i c a l p l o t j u s t f i t s the sampled da ta

30 v a r i a n c e =1 / (2 s td (p o s i t i o n) ˆ 2) ;
x = 0 : 0 . 2 5 : s t a i r s +2;
p l o t (x , h i s to max exp (v a r i a n c e (x (s t a i r s + 2) / 2) . ˆ 2) , ’ r ’) ;

% a n n o t a t e the p l o t
35 a x i s ([0 s t a i r s + 2 0 h i s to max]) ;

t i t l e (’ The Gal ton Board ’) ;
x l a b e l (’ box number ’) ; y l a b e l (’ number of b a l l s ’) ;
hold o f f ;

C.2.3 Poisson Distribution

%
% Genera t e Po i s son Random Numbers us ing
% the t r a n s f o r m a t i o n method and the e x p o n e n t i a l
% d i s t r i b u t i o n

5 %
% F a c t o r i a l s can be g e n e r a t e d us ing the prod () f u n c t i o n !
% N! = prod (1 : N)
%
c l e a r ; he lp Po i s son ;

10 s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 3) ;

% P a r a m e t e r s of the Po i s son D i s t r i b u t i o n
lambda = i n p u t (’ lambda for t he Po i s son d i s t r i b u t i o n (1 0) ? ’) ;

15 N= i n p u t (’ How many random numbers (1 0 0 0) ? ’) ;
Po i s s (1 : N)=0 ;

% Loop over random numbers
for i =1: N,

20 % Algor i thm
A=1;
k =0;

C.3. LISTINGS FOR CHAPTER 3 393

A=A rand (1) ;
while (A = exp (lambda))

25 A=A rand (1) ;
k=k +1;

end

Po i s s (i)= k ;
30 end

% d i s p l a y the r e s u l t s
d i sp (s p r i n t f (’ Mean va lue (% f) : % f ’ , lambda , mean (Po i s s))) ;
d i sp (s p r i n t f (’ Var i ance (% f) : % f ’ , lambda , s td (Po i s s) ˆ 2)) ;

35
% p l o t the r e s u l t s
% the random numbers
f i g u r e (1) ; p l o t (Po i s s , ’ + ’) ;
t i t l e (’ the g e n e r a t e d sequence of Po i s son d i s t r i b u t e d random numbers ’) ;

40
% the d i s t r i b u t i o n
f i g u r e (2) ; h i s t (Po i s s , 2 0) ;
for j =1:100

f a c t o r i a l (j)= prod (1 : j) ;
45 end

P o i s s t h e o r y (1 : 1 0 0) = lambda . ˆ (1 : 1 0 0) exp (lambda) . / f a c t o r i a l (1 : 1 0 0) ;
P o i s s t h e o r y = P o i s s t h e o r y (max (h i s t (Po i s s , 2 0)) / max (P o i s s t h e o r y)) ;
hold on ; p l o t (1 : 5 0 , P o i s s t h e o r y (1 : 5 0) , ’ r ’) ;
hold o f f ;

50 t i t l e (’ His togram of g e n e r a t e d numbers compared with t h e o r y ’) ;

% 2D P l o t
f i g u r e (3) ;
p l o t (Po i s s (1 : 2 : N 1), Po i s s (2 : 2 : N) , ’ ’) ;

55 t i t l e (’2 D Poi s son d i s t r i b u t i o n ’) ;

C.3 Listings for Chapter 3
C.3.1 Random number generator

%
% program to g e n e r a t e random numbers
% uniform in [0 , 1)
% us ing l i n e a r c o n g r u e n t i a l mehtod

5 %
c l e a r ; he lp l i n e a r c o n ;
s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 8) ;

% P a r a m e t e r s for t he g e n e r a t o r
10 parm = i n p u t (’ Which p a r a m e t e r s e t (1 or 2) ? ’) ;

i f (parm ==1)
a =16807;
c =0;
M=2ˆ31 1;

15 e l s e
a =65539;
c =0;
M=2ˆ31 1;

394 APPENDIX C. LISTINGS FOR THE EXERCISES

end
20

% I n i t i a l Seed
Seed = i n p u t (’ Seed for t he g e n e r a t o r (1) ? ’) ;

N= i n p u t (’ How many numbers shou ld I g e n e r a t e (1 0 0 0 0) ? ’) ;
25 I (1 : N+1)=0;

I (1)= Seed ;

% Genera t e the numbers
for i =2: N+1,

30 I (i)= f l o o r (rem (a I (i 1)+c , M)) ;
end
I =I . / M;

% d i s p l a y / p l o t the r e s u l t s
35 d i sp (s p r i n t f (’ mean va lue (0 . 5) : % f ’ , mean (I))) ;

d i sp (s p r i n t f (’ v a r i a n c e (0 . 0 8 3 3 3) : % f ’ , s td (I) ˆ 2)) ;

% His togram of d i s t r i b u t i o n
f i g u r e (1) ; h i s t (I , 1 0) ;

40 t i t l e (’ His togram of the random numbers ’) ;

% random numbers i t s e l f in 1 D
f i g u r e (2) ; p l o t (I , ’ ’) ;
t i t l e (’ g e n e r a t e d uniform random numbers ’) ;

45 x l a b e l (’ number ’) ; y l a b e l (’ random number ’) ;

% random numbers i t s e l f in 2 D
f i g u r e (3) ; p l o t (I (1 : 2 : N) , I (2 : 2 : N+ 1) , ’ + ’) ;
t i t l e (’2 D v e c t o r s of the random numbers ’) ;

50
% random numbers i t s e l f in 1 D
f i g u r e (4) ; p l o t 3 (I (1 : 3 : N 1), I (2 : 3 : N) , I (3 : 3 : N+ 1) , ’ + ’) ;
t i t l e (’3 D v e c t o r s of the random numbers ’) ;
r o t a t e 3 d ;

C.3.2 Acceptance-rejection method

%%
%% Program Acceptance / R e j e c t i o n Method
%%
%% Calc the volume of a n d i m e n s i o n a l sphe re

5 %% us ing the von Neumann method
%%
c l e a r ; he lp r e j e c t i o n . m;

dim= i n p u t (’ Dimension of sphe re (3) ? ’) ;
10 samples = i n p u t (’ Sample s i z e (1 0 0 0 0) ? ’) ;

r e a l i s = i n p u t (’ How many r e a l i z a t i o n s (5 0 0) ? ’) ;

%%% P a r a m e t e r s
Radius =1;

15 % e x a c t r e s u l t
e x a c t (dim)= Radius ˆ (dim) pi ˆ (dim / 2) / gamma(dim / 2 + 1) ;
Radius = Radius ˆ 2 ;

C.3. LISTINGS FOR CHAPTER 3 395

Hi t s (1 : r e a l i s)=0 ;
20 for j =1: r e a l i s ,

% Slow Vers ion
%for i =1: samples ,
% i f (sum (((2 rand (dim , 1) 1) . Radius) . ˆ 2) Radius)
% Hi t s (j)= Hi t s (j)+1 ;

25 % end
%end

% Fas t Vers ion
Hi t s (j)= sum (sum (((2 . rand (dim , samples) 1) . Radius) . ˆ 2) Radius) ;

30
% C a l u l a t e r e s u l t s
Hi t s (j)= Hi t s (j) / samples (2 ˆ dim) ;

end
% c a l c mean and s t a n d a r d d e v i a t i o n

35 e s t i m a t e =mean (Hi t s) ;
e r r o r = s td (Hi t s) / s q r t (r e a l i s) ;

d i sp (s p r i n t f (’ n E s t i m a t e d volume of sphe re i s : % f + % f ’ , . . .
e s t i m a t e , e r r o r)) ;

40 d i sp (s p r i n t f (’ Exact r e s u l t : % f ’ , e x a c t (dim))) ;
d i sp (s p r i n t f (’ n D i s t a n c e to e x a c t r e s u l t : % f ’ , e x a c t (dim) e s t i m a t e)) ;

% p l o t samples , mean and 68 p e r c e n t a rea around mean
p l o t (Hi t s , ’ bo ’) ; hold on ;

45 p l o t ([1 r e a l i s] , [e s t i m a t e e s t i m a t e] , ’ b ’) ;
e r r o r = e r r o r s q r t (r e a l i s) ;
p l o t ([1 r e a l i s] , [e s t i m a t e + e r r o r e s t i m a t e + e r r o r] , ’ b ’);
p l o t ([1 r e a l i s] , [e s t i m a t e e r r o r e s t i m a t e e r r o r] , ’ b ’);
% p l o t e x a c t r e s u l t

50 p l o t ([1 r e a l i s] , [e x a c t (dim) e x a c t (dim)] , ’ r : ’) ; hold o f f ;
t i t l e (s p r i n t f (’ volume of the % i d i m e n s i o n a l sphe re ’ , dim)) ;
x l a b e l (’ r e a l i z a t i o n s ’) ; y l a b e l (’ volume ’) ;

C.3.3 Importance Sampling

%%
%% Impor tance Sampling
%%
%% C a l c u l a t e an I n t e g r a l us ing an impor t ance f u n c t i o n

5 %%
c l e a r ; he lp impor t ance ;

N 0= i n p u t (’ How many p o i n t s (1 0 0 0) ? ’) ;
cmax= i n p u t (’ up to which cu t o f f va lue (1 0) ? ’) ;

10
j =1;
for c = 0 . 1 : 0 . 2 : cmax ,

%% normal d i s t r i b u t e d random numbers wi th v a r i a n c e 1 / 2
%% in the i n t e r v a l [i n f i n i t y , i n f i n i t y)

15 xi = randn (N 0 , 1) / s q r t (2) ;
% take only the v a l u e s in the i n t e g r a t i o n i n t e r v a l
x i = xi . (abs (xi) c) ;
% use c o r r e c t N
N=sum (abs (xi) c) ;

20 % c o r r e c t for t he n o r m a l i z a t i o n c o n s t a n t and the ex tended i n t e r v a l

396 APPENDIX C. LISTINGS FOR THE EXERCISES

xi = xi . s q r t (p i) . / 2 ;

% c a l c u l a t e the i n t e g r a l (use the a b s o l u t e va lue , because
% of the e x t e n s i o n of the i n t e r v a l to i n f i n i t y)

25 e s t i m a t e (j)= sum (abs (xi)) / N;

% us ing s t a n d a r d sampl ing
xi2 = rand (N, 1) c ;
e s t i m a t e s t a n d a r d (j)= c / N sum (xi2 . exp (xi2 . ˆ 2)) ;

30
j = j +1;

end
var imp = s td (e s t i m a t e (f l o o r (j / 2) : j 1)) ;
v a r s t a n d a r d = s td (e s t i m a t e s t a n d a r d (f l o o r (j / 2) : j 1)) ;

35
d i sp (s p r i n t f (’ n n R e s u l t s for e f f e c t i v e N=%i : ’ , N)) ;
d i sp (s p r i n t f (’ n impor t ance sampl ing : % f ’ , e s t i m a t e (j 1))) ;
d i sp (s p r i n t f (’ s t a n d a r d sampl ing : % f ’ , e s t i m a t e s t a n d a r d (j 1))) ;
d i sp (s p r i n t f (’ n v a r i a n c e impor t ance sampl ing : % f ’ , var imp)) ;

40 d i sp (s p r i n t f (’ v a r i a n c e s t a n d a r d sampl ing : % f ’ , v a r s t a n d a r d)) ;

% p l o t the i n t e g r a l v e r s u s c u t o f f and the e s t i m a t e s
f i g u r e (1) ; v = 0 : 0 . 1 : cmax ;
p l o t (v ,0 .5 0 .5 exp (v . ˆ 2) , ’ b ’) ; hold on ;

45 p l o t (0 . 1 : 0 . 2 : cmax , e s t i m a t e (:) , ’ r ’) ;
p l o t (0 . 1 : 0 . 2 : cmax , e s t i m a t e s t a n d a r d (:)) ;
hold o f f ; t i t l e (’ va lue of the i n t e g r a l v e r s u s the c u t o f f va lue ’) ;
x l a b e l (’ Cu to f f c ’) ; y l a b e l (’ i n t e g r a l ’) ;
% p l o t s y s t e m a t i c e r r o r because of c u t o f f

50 f i g u r e (2) ; v = 0 : 0 . 5 : c ;
semi logy (v , 0 . 5 exp (v . ˆ 2)) ;
t i t l e (’ s y s t e m a t i c e r r o r because of c u t o f f ’) ;
% p l o t the f u n c t i o n i t s e l f
f i g u r e (3) ; v = 0 : 0 . 1 : 5 ;

55 p l o t (v , v . v . exp (v . ˆ 2)) ;
t i t l e (’ the f u n c t i o n v e ˆ v ˆ 2 ’) ;

C.3.4 First passage times

%%
%% F i r s t Passage Time (f p t) for 2 D random walk
%%
%% use a c i r c l e wi th r a d i u s R for t he f p t

5 %%
c l e a r ; he lp f i r s t p a s s a g e ;

N= i n p u t (’ How many walks (1 0 0 0) ? ’) ;
R= i n p u t (’ Radius R of c i r c l e (5) ? ’) ;

10
% maximum of 1 0 0 0 0 s t e p s for t he f p t
f p t (1 : 1 0 0 0 0) = 0 ;

j max =1;
15 for i =1: N,

j = 1 ; pos (1 : 2) = 0 ;

% do s t e p s u n t i l t he r a d i u s i s r eached

C.3. LISTINGS FOR CHAPTER 3 397

while (norm (pos (:)) = R) ,
20 % x or y p o s i t i o n to change (equa l prob .)

xy =3;
while (xy = = 3)

xy= f l o o r (1+ rand (1) 2) ;
end

25 % c r e a t e a 1 or 1 wi th prob . 0 . 5 each
jump =0;
while (jump = = 0) ,

jump = s ign (rand (1) 0 . 5) ;
end

30 pos (xy)= pos (xy)+ jump ;
j = j +1;

end

f p t (j)= f p t (j)+1 ;
35 i f (j j max)

j max = j ;
end

end

40 % r e s u l t s
mean fp t =(sum (f p t (1 : j max) . (1 : j max))) / N;
d i sp (s p r i n t f (’ n mean f i r s t pas sage t ime i s % f s t e p s . ’ , mean fp t)) ;

% p l o t the r e s u l t s
45 f i g u r e (1) ; p l o t (f p t (1 : j max)) ;

t i t l e (s p r i n t f (’ f i r s t pas sage t imes (s t e p s) for r a d i u s R=%i ’ , R)) ;
x l a b e l (’ f i r s t pas sage t ime (s t e p s) ’) ; y l a b e l (’ coun t s ’) ;
% p l o t the mean va lue
hold on ; p l o t ([mean fp t mean fp t] , [0 max (f p t) + 2] , ’ r : ’) ; hold o f f ;

50
% p l o t of some r e s u l t s from d i f f e r e n t runs
R runs = [1 2 2 . 5 3 3 . 5 4 4 . 5 5 6 7 1 0 2 0] ;
f p t r u n s = [3 . 6 5 6 . 6 5 1 0 . 3 2 1 2 . 1 5 1 5 . 5 8 1 9 . 5 0 2 6 . 2 7 3 0 . 0 3 . . .

4 1 . 2 2 5 3 . 9 7 1 1 0 . 4 8 4 3 6 . 3 7] ;
55 f i g u r e (2) ; p l o t (R runs , f p t r u n s) ;

t i t l e (’ F i r s t Passage Times for d i f f e r e n t Rad i i (1 0 0 0 walks) ’) ;
x l a b e l (’ Radius R ’) ; y l a b e l (’ mean f i r s t pas sage t ime ’) ;

C.3.5 Scaling Behaviour of Random Walk in 2D and 3D

%%%
%%% S c a l i n g b e h a v i o r of a Symmetric / Asymmetric
%%% 2D/3 D Random Walk for t he end to end d i s t a n c e
%%%

5 c l e a r ; he lp r w s c a l i n g ;

d imension = i n p u t (’ Dimension (2 or 3) ? ’) ;
r e a l i z a t i o n s = i n p u t (’ How many r e a l i z a t i o n s (1 0 0) ? ’) ;
N min= i n p u t (’ How many s t e p s START (1 0) ? ’) ;

10 N max= i n p u t (’ How many s t e p s STOP (1 0 0 0) ? ’) ;
N Step = i n p u t (’ How many i n t e r m e d i a t e s t e p s (1 0) ? ’) ;
N Step = f l o o r ((N max N min) / N Step) ;

% Symmetric P r o b a b i l i t i e s
15 P (1) = 0 . 2 5 ; P (2) = 0 . 5 ;

398 APPENDIX C. LISTINGS FOR THE EXERCISES

P (3) = 0 . 7 5 ; P (4) = 1 . 0 ;
% for 3 D
P (5) = 1 . 2 5 ; P (6) = 1 . 5 ;

20 % square l a t t i c e p o s s i b i l i t i e s
i f (d imension ==2)

% for 2 D
walk (1 , 1 : 2) = [1 0] ; walk (2 , 1 : 2) = [1 0] ;
walk (3 , 1 : 2) = [0 1] ; walk (4 , 1 : 2) = [0 1] ;

25 e l s e
% for 3 D
walk (1 , 1 : 3) = [1 0 0] ; walk (2 , 1 : 3) = [1 0 0] ;
walk (3 , 1 : 3) = [0 1 0] ; walk (4 , 1 : 3) = [0 1 0] ;
walk (5 , 1 : 3) = [0 0 1] ; walk (6 , 1 : 3) = [0 0 1] ;

30 end

% f i x e d or random s t e p s i z e
s t e p = i n p u t (’ Use f i x e d s t e p s i z e of 1 (o t h e r w i s e random s t e p s i z e in [0 , 1]) (1) ? ’) ;
i f (s t e p ==1)

35 d i sp (’ S t e p s i z e i s 1 ! ’) ;
s tep max =1;

e l s e
s tep max = i n p u t (’ Maximum s t e p s i z e (1) ? ’) ;
d i sp (’ S t e p s i z e i s random betweeen [0 , 1] ! ’) ;

40 end

% s t a r t the walks . . .
t (1)= cput ime ;

45
% S c a l i n g loop
count =0;
for N=N min : N Step : N max ,

count = count + 1 ; s t e p s i z e =ones (N, 1) ;
50 d i sp (s p r i n t f (’ Walks wi th N = % i ! CPU time for p r e v i o u s walks : % f ’ , N, cput ime t (count))) ;

t (count +1)= cput ime ;
% do t he r e a l i z a t i o n s
for j =1: r e a l i z a t i o n s ,

pos (1 : d imension)=0 ;
55 % draw a l l random numbers a t once between 1 and 4

random = rand (N, 1) (d imension / 2) ;
i f (s t e p ==0)

s t e p s i z e = step max . rand (N, 1) ;
end

60
% do t he s t e p s
for i =1: N,

pos =pos + s t e p s i z e (i)
walk (sum ((random (i) ones (1 , d imension 2)) P (1 :2 dimension)) , :) ;

65 end
% c a l c the end to end d i s t a n c e
R squa re (count , j)= norm (pos) ˆ 2 ;

end
end

70 % p l o t the e l a p s e d CPU time
t t o t a l = cput ime t (1) ;
d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t t o t a l)) ;

C.3. LISTINGS FOR CHAPTER 3 399

% c a l c r e s u l t s (mean and e r r o r)
75 % matlab

R sq mean =mean (R square (1 : count , :) , 2) ;
R s q s t d d e v = s td (R squa re (1 : count , :) , 0 , 2) / s q r t (r e a l i z a t i o n s) ;
% oc tave
%R sq mean =mean (R square (1 : count , :) ’) ;

80 %R s q s t d d e v = s td (R squa re (1 : count , :) ’) / s q r t (r e a l i z a t i o n s) ;

% Leas t Square F i t
f i t = p o l y f i t (log (N min : N Step : N max) , log (R sq mean) ’ , 1) ;
d i sp (s p r i n t f (’ Leas t squa re f i t : b=%f and a=%f ! ’ , . . .

85 f i t (1) , exp (f i t (2) / f i t (1)))) ;
l o g l o g (N min : N Step : N max , f i t (2)+ f i t (1) (N min : N Step : N max) , ’ r : ’) ;
a x i s ([N min N max min (R sq mean) max (R sq mean)]) ;
hold on ;

90 % p l o t the sampled r e s u l t s
e r r o r b a r (N min : N Step : N max , R sq mean , R s q s t d d e v) ;
hold o f f ;
t i t l e (s p r i n t f (’ End to End D i s t a n c e in % i Dimensions ’ , d imension)) ;
x l a b e l (’ l e n g t h of the walk N’) ;

95 y l a b e l (’ End to End D i s t a n c e Rˆ 2 ’) ;
zoom ; d i sp (’ You can zoom through the f u n c t i o n now ! ! ! ’) ;

C.3.6 Percolation in 2D

%%
%% P e r c o l a t i o n in 2 D
%%
%% Simula t e a p e r c o l a t i o n c l u s t e r in 2 D

5 %% and f i n d the spann ing c l u s t e r s us ing the
%% Hoshen Kopelmann a l g o r i t h m)
%%
c l e a r ; he lp p e r c o l a t i o n ;

10 s i z e = i n p u t (’ Size of the c l u s t e r (2 0) ? ’) ;
p min = i n p u t (’ Occupa t ion p r o b a b i l i t y START (0 . 2) ? ’) ;
p max = i n p u t (’ Occupa t ion p r o b a b i l i t y STOP (0 . 8) ? ’) ;
p s t e p = i n p u t (’ S t e p s i z e for p r o b a b i l i t y (0 . 0 5) ? ’) ;
r e a l i z a t i o n s = i n p u t (’ Number of r e a l i z a t i o n s (1 0 0) ? ’) ;

15
%%
%% P r o b a b i l i t y loop
%%
number = f l o o r ((p max p min) / p s t e p) + 1 ; p sc (number + 1) = 0 ; count =0;

20 for p=p min : p s t e p : p max ,
count = count +1;
d i sp (p)

%
25 % R e a l i z a t i o n loop

%
s p a n c l u s t e r (1 : 2) = 0 ;
for r e a l =1: r e a l i z a t i o n s ,

30 % Crea te a p e r c o l a t i o n c l u s t e r of s i z e ’ s i z e +1’
% have z e r o s on the l e f t and upper f a c e s !

400 APPENDIX C. LISTINGS FOR THE EXERCISES

c l u s t e r (1 : s i z e + 2 , 1 : s i z e +2)=0;
c l u s t e r (2 : s i z e + 1 , 2 : s i z e +1)=(rand (s i z e) p) ;

35 % Hoshen Kopelmann a l g o r i t h m
L(1 : s i z e + 2 , 1 : s i z e + 2) = 0 ; m=0;
% maximum number of i n d i c e s for one c l u s t e r (used to
% f i n d the prope r c l u s t e r index)
p rope r (1 : 2 , 1 : 1 0) = 0 ;

40 for i =2: s i z e +1,
for j =2: s i z e +1,

i f (c l u s t e r (i , j)==1)
i f (c l u s t e r (i 1, j)==0)

i f (c l u s t e r (i , j 1)==0)
45 % both unoccup ied

m=m+ 1 ; N(m)=m; L(i , j)=m;
e l s e

% one occup ied
L(i , j)= L(i , j 1);

50 end
e l s e

i f (c l u s t e r (i , j 1)==0)
% one occup ied
L(i , j)= L(i 1, j) ;

55 e l s e
% two occup ied
i f (L(i 1, j)== L(i , j 1))

% same l a b e l s
L(i , j)= L(i 1, j) ;

60 e l s e
% d i f f e r e n t l a b e l s
% c l a s s i f y the p rope r c l u s t e r numbers of
% the two n e i g h b o u r i n g s i t e s
% f i r s t

65 t1 = N(L(i 1, j)) ; t c1 =1;
while (t1 0)

p rope r (1 , t c1)= t1 ;
t1 = N(t1) ;
t c1 = tc1 +1;

70 end
i f (t c1 2)

N(L(i 1, j))= prope r (1 , t c1 1);
end
% second

75 t2 = N(L(i , j 1)) ; t c2 =1;
while (t2 0)

p rope r (2 , t c2)= t2 ;
t2 = N(t2) ;
t c2 = tc2 +1;

80 end
i f (t c2 2)

N(L(i , j 1))= prope r (2 , t c2 1);
end

85 % get p rope r index
k min =min(t1 , t2) ;
k max =max(t1 , t2) ;
L(i , j)= k min ;
i f (k min ˜= k max)

C.3. LISTINGS FOR CHAPTER 3 401

90 N(k max)= k min ;
end

end
end

end
95 end

% end of i f block
end

end

100 % r e d u n d a n t index removal from c l u s t e r
aga in =1;
while (aga in ==1)

aga in =0;
for i =2: s i z e +1,

105 for j =2: s i z e +1,
i f (L(i , j) 0)

i f (N(L(i , j)) 0)
L(i , j)= abs (N(L(i , j))) ;
aga in =1;

110 end
end

end
end

end
115

%% spann ing c l u s t e r s ? ?
% upper and lower f a c e s
span =0;
for i =2: s i z e +1

120 i f (L (2 , i) ˜ = 0)
i f (sum (L (2 , i)== L(s i z e + 1 , :)) 1)

% There i s one
span = 1 ; break ;

end
125 end

end
% l e f t and r i g h t f a c e s
i f (span ==0)

for i =2: s i z e +1
130 i f (L(i , 2) ˜ = 0)

i f (sum (L(i ,2)== L (: , s i z e + 1)) 1)
% There i s one
span = 1 ; break ;

end
135 end

end
end
%i f (span ==1)
% disp (’ We have found a spann ing c l u s t e r ! ! ! ’) ;

140 %e l s e
% disp (’ NO spann ing c l u s t e r ! ! ! ’) ;
%end

% p l o t us ing p c o l o r ONLY for f i r t s r e a l i z a t i o n
145 i f (s i z e 22 & r e a l ==1)

f i g u r e (1) ;
p c o l o r (L(2 : s i z e + 2 , 2 : s i z e + 2)) ; shad ing f l a t ;

402 APPENDIX C. LISTINGS FOR THE EXERCISES

for i =2: s i z e +1
for j =2: s i z e +1

150 t e x t (j 1+0.25, i 1+0.35, num2st r (L(i , j))) ;
end

end
pause ;

end
155

%
% End of r e a l i z a t i o n s loop
%
s p a n c l u s t e r (span +1)= s p a n c l u s t e r (span +1)+1;

160 end
%%
%% end of p r o b a b i l i t y loop
%%
p sc (count)= s p a n c l u s t e r (2) / r e a l i z a t i o n s ;

165 end

f i g u r e (2) ;
p l o t (p min : p s t e p : p max , p sc (1 : number)) ;
t i t l e (s p r i n t f (’2 D p e r c o l a t i o n wi th s i z e % i ’ , s i z e)) ;

170 x l a b e l (’ o c c u p a t i o n p r o b a b i l i t y ’) ;
y l a b e l (’ spann ing c l u s t e r p r o b a b i l i t y ’) ;
%di sp (s p r i n t f (’ C r i t i c a l p r o b a b i l i t y for spann ing c l u s t e r s i s % f ’ . . .
% , mean (p sc))) ;

C.3.7 First passage times

%
% E i n s t e i n So l id
%
% Simula t e an E i n s t e i n So l id to c l a r i f y the impor t ance of the

5 % Boltzmann d i s t r i b u t i o n
%
c l e a r ; he lp e i n s t e i n s o l i d ;

N= i n p u t (’ Size of the 2 D l a t t i c e (N= 4 0) ? ’) ;
10 s t e p s = i n p u t (’ How many s t e p s (1 0 0 0 0) ? ’) ;

i n t e r v a l = i n p u t (’ P l o t a f t e r how many s t e p s each (2 0 0 0) ? ’) ;
i n i t i a l = i n p u t (’ d i s p l a y i n i t i a l 2 0 0 s t e p s (1= yes) ? ’) ;

% i n i t i a l s t a t e
15 l a t t i c e (1 : N, 1 : N)=1 ;

% t r a n s f e r of quan ta (s t e p s)
p l o t i t = i n t e r v a l ;
for i =1: s t e p s ,

20 f l a g =1;
% do as long as the s t e p i s d i s r e g a r d e d
while (f l a g ==1)

% ge t x , y c o o r d i n a t e s of c e l l s
rnd (1 : 4) = f l o o r (rand (1 , 4) N 1e 10)+1;

25 i f (rnd (1 : 2) ˜ = rnd (3 : 4))
% i s t h e r e a quan ta in the c e l l to jump ?
i f (l a t t i c e (rnd (1) , rnd (2)) 0)

l a t t i c e (rnd (1) , rnd (2)) = l a t t i c e (rnd (1) , rnd (2)) 1 ;

C.4. LISTINGS FOR CHAPTER 4 403

l a t t i c e (rnd (3) , rnd (4)) = l a t t i c e (rnd (3) , rnd (4)) + 1 ;
30 f l a g =0;

end
end
% end i f

end
35 % end while

i f (i = = p l o t i t (i 200 & i n i t i a l ==1 & mod(i , 1 0) = = 0))
f i g u r e (2) ; c o n t o u r f (l a t t i c e) ; c o l o r b a r ; a x i s squa re ;
t i t l e (s p r i n t f (’ L a t t i c e a f t e r % i s t e p s ’ , i)) ;
pause ; p l o t i t = i + i n t e r v a l ;

40 end
end
% end s t e p s

45 % p l o t the r e s u l t i n g l a t t i c e
% numbers
i f (N =20)

l a t t i c e
end

50 a x i s auto ;
% c o n t o u r p l o t
f i g u r e (1) ; c o n t o u r (l a t t i c e) ;
% c o n t o u r wi th p a t c h e s (f i l l e d)
f i g u r e (2) ; c o n t o u r f (l a t t i c e) ; c o l o r b a r ;

55 % s u r f a c e p l o t
f i g u r e (3) ; mesh (l a t t i c e) ;
% (f i l l e d) s u r f a c e p l o t
f i g u r e (4) ; s u r f (l a t t i c e) ; c o l o r b a r ;

60 % d i s t r i b u t i o n f u n c t i o n
df (1 : N+1)=0;
for i =1: N,

df =df + h i s t (l a t t i c e (i , :) , 0 : N) ;
end

65 % f i t a bol tzmann d i s t r i b u t i o n
% avoid z e r o s because of l o g a r i t h m
for i =1: N+1,

i f (df (i) = = 0) break ; end
end

70 a= p o l y f i t (0 : i 2, log (df (1 : i 1)) , 1) ;
f i g u r e (5) ; semi logy (0 : i 1, df (1 : i) , ’ rd ’) ;
t i t l e (’ d i s t r i b u t i o n of s i t e s c o n t a i n i n g N q u a n t a s ’) ;
x l a b e l (’ q u a n t a s N’) ; y l a b e l (’ number of s i t e s ’) ;
hold on ; semilogy (0 : i , exp ((0 : i) a (1)) exp (a (2))) ; hold o f f ;

75 d i sp (’ The r e s u l t i n g d i s t r i b u t i o n i s : ’) ;
d i sp (df)
d i sp (’ C o n s i s t e n c y Check for t he s i m u l a t i o n : ’) ;
d i sp (s p r i n t f (’ Sum of a l l q u a n t a s : % i : : shou ld be % i ! ’ , . . .

sum (df) , N N)) ;

C.4 Listings for Chapter 4
C.4.1 One-Step Processes

404 APPENDIX C. LISTINGS FOR THE EXERCISES

% o n e s t e p Program to s i m u l a t e a one s t e p p r o c e s s
c l e a r ; he lp o n e s t e p ; % Clea r memory and p r i n t heade r
s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6) ;

5 n s t a r t = i n p u t (’ En te r i n i t i a l va lue of N (5 0 0) ’) ;
tend = i n p u t (’ En te r f i n a l t ime in s (3 0) ’) ;
n r e a l = i n p u t (’ En te r number of r e a l i z a t i o n s (1 0) ’) ;
T s t a r t = cput ime ;

10 t s t a r t =0;
nmes= z e r o s (1 , tend +1) ;
nmes (1)= n s t a r t ;
nmes2 = z e r o s (1 , tend +1) ;
nmes4 = z e r o s (1 , tend +1) ;

15 nmes2 (1) = 0 ;
nmes4 (1) = 0 ;
tmes =[0 : tend +1] ;
% r e a l i z a t i o n s loop
for j = 1 : n r e a l

20 t = t s t a r t ;
n= n s t a r t ;
imes =2;
while (t =tend)

%d e t e r m i n e one s t e p jump p r o b a b i l i t i e s per u n i t t ime
25 % t r a n s i t i o n r a t e s for r a d i o a c t i v e decay

%[g , r]= decaymas te r (n) ;
%
%t r a n s i t i o n r a t e s for t he Po i s son p r o c e s s
%[g , r] = p o i s s o n m a s t e r (n) ;

30 %
%t r a n s i t i o n r a t e s for t he c o n t i n u o u s t ime random walk
%[g , r] = wa lkmas te r (n) ;
% e v a l u a t e t o t a l jump r a t e
g =0.4 n ;

35 r =0.5 n ;
lambda =g+r ;
y1=r / lambda ;
% draw e x p o n e n t i a l l y d i s t r i b u t e d random number
t au = log (rand (1 , 1)) / lambda ;

40 t = t + tau ;
while t =tmes (imes)

nmes (imes)= nmes (imes)+ n ;
nmes2 (imes)= nmes2 (imes)+ n n ;
nmes4 (imes)= nmes4 (imes)+ n n n n ;

45 imes =imes +1;
i f imes =(tend +2)

break
end

end
50 i f rand (1 , 1) y1

% jump from n to (n 1)
n=n 1;

e l s e
% jump from n to (n +1)

55 n=n +1;
end

% end of t ime i n t e g r a t i o n
end

C.4. LISTINGS FOR CHAPTER 4 405

% end of r e a l i z a t i o n loop
60 end

% n o r m a l i z e mean v a l u e s and v a r i a n c e
nmes=nmes / n r e a l ;
nmes (1)= nmes (1) n r e a l ;
nmes2 =nmes2 / n r e a l ;

65 nmes4 =nmes4 / n r e a l ;
sdev (1) = 0 ;
sdev2 (1) = 0 ;
for imes =2: tend +1

sdev (imes)= s q r t ((nmes2 (imes) nmes (imes) nmes (imes)) / n r e a l) ;
70 sdev2 (imes) = s q r t ((nmes4 (imes) nmes2 (imes) nmes2 (imes)) / n r e a l) ;

end
d i sp (’ CPUTIME : ’) ;
cput ime T s t a r t
i f n r e a l ==1

75 %p l o t one r e a l i z a t i o n of the p r o c e s s
p l o t (0 : tend , nmes , ’ x ’) ;
%t i t l e (’ R a d i o a c t i v e decay ’) ;
%t i t l e (’ Po i s son p r o c e s s ’) ;
t i t l e (’ Con t inuous t ime random walk ’) ;

80 x l a b e l (’ t ime ’) ;
y l a b e l (’ n ’) ;
e l s e

%p l o t r e s u l t of s i m u l a t i o n wi th e r r o r b a r s
s u b p l o t (2 , 1 , 1)

85 e r r o r b a r (0 : tend , nmes , sdev) ;
%t i t l e (’ R a d i o a c t i v e decay ’) ;
%t i t l e (’ Po i s son p r o c e s s ’) ;
t i t l e (’ Con t inuous t ime random walk ’) ;
x l a b e l (’ t ime ’) ;

90 y l a b e l (’ n ’) ;
s u b p l o t (2 , 1 , 2)
e r r o r b a r (0 : tend , nmes2 , sdev2) ;
x l a b e l (’ t ime ’) ;
y l a b e l (’ n ˆ 2 ’) ;

95 end

%%
%% Onestep FAST
%%
c l e a r ; he lp o n e s t e p f a s t ;

5
% p a r a m e t e r s for c o r r e l a t i o n f u n c t i o n
c o r r e l a t i o n = i n p u t (’ C a l c u l a t e c o r r e l a t i o n f u n c t i o n (no = 0 , yes = 1) ? ’) ;
i f c o r r e l a t i o n ˜=0

c o r r e l a t i o n =1;
10 a n z c o r r e l = i n p u t (’ How many c o r r e l a t i o n f u n c t i o n s shou ld be p l o t t e d (5) ? ’) ;

end
% A f t e r how many s t e p s assume the s t a t i o n a r y s t a t e ?
t s t a t i o n a r y =5;
% i n p u t p a r a m e t e r s

15 i n i t i a l = i n p u t (’ I n i t i a l Value ? ’) ;
t e n d = i n p u t (’ End Time (5 0) ? ’) ;
r e a l = i n p u t (’ Number of R e a l i z a t i o n s (1 0 0) ? ’) ;
i f (r e a l 1)

t s a m p l e = i n p u t (’ Sample Time i n t e r v a l (1) ? ’) ;
20 % How many s t e p s to save

406 APPENDIX C. LISTINGS FOR THE EXERCISES

t s a v e = f l o o r (t e n d / t s a m p l e)+1 ;
% i n i t i a l i z e
N(1 : r e a l , 1 : t s a v e)=0 ;

e l s e
25 t s a m p l e = t e n d ;

t s a v e = t e n d ;
end
pn= i n p u t (’ P l o t P (n , t) for each t (yes = 1 , no = 0) ? ’) ;
i f (pn ˜=0)

30 pn =1;
end
%%%%%
%%%%%START of SIMULATION
%%%%%

35 % CPU Time
t0 = cput ime ;
% r e a l i z a t i o n loop
for i =1: r e a l ,

N(i , 1)= i n i t i a l ;
40 nn= i n i t i a l ;

t = 0 ; sample = 1 ; sample2 = 1 ; lambda =1;
% one r e a l i z a t i o n :
while (sample t s a v e)

t s t o p =sample t s a m p l e ;
45 % advance u n t i l save of p o s i t i o n

while (t t s t o p)
%%%%
%%%%CHANGE HERE
%%%%

50 [g , r] = p a y r o l l m a s t e r (nn) ;
%%%%
lambda =g+r ;
% check i f t o t a l t r a n s i t i o n p r o b a b i l i t y i s zero (s t a t i o n a r y)
i f (lambda 0)

55 % g e n r a t e random numbers and advance t ime
random = rand (2 , 1) ;
t = t log (random (1)) / lambda ;
% advance : n=n +1 or n=n 1 ??
nn=nn +2 ((random (2) lambda) r) 1;

60 e l s e
break ;

end
% save whole r e a l i z a t i o n i f only one i s c a l c u l a t e d
i f (r e a l ==1)

65 N(i , sample2)= nn ; t r e a l (sample2)= t ;
sample2 =sample2 +1;

end
end
i f (lambda 0 & r e a l 1)

70 % save p o s i t i o n
sample =sample +1;
N(i , sample)= nn ;

e l s e
break ;

75 end
end

end
%%%

C.4. LISTINGS FOR CHAPTER 4 407

%%%END OF SIMULATION
80 %%%

% p r e p a r e r e s u l t s : f i r s t and second moments
i f (r e a l 1)

% mean
N mean (1 : t s a v e)= mean (N (: , :) , 1) ;

85 N std (1 : t s a v e)= s td (N (: , :) , 0 , 1) / s q r t (r e a l) ;
% second moment
N moment2 (1 : t s a v e)= mean (N (: , :) . ˆ 2 , 1) ;
N std moment2 (1 : t s a v e)= s td (N (: , :) . ˆ 2 , 0 , 1) / s q r t (r e a l) ;
% v a r i a n c e

90 N var (1 : t s a v e)= mean ((N(: , :) repmat (. . .
N mean (1 : t s a v e) , r e a l , 1)) . ˆ 2 , 1) ;

N s t d v a r (1 : t s a v e)= s td ((N(: , :) repmat (. . .
N mean (1 : t s a v e) , r e a l , 1)) . ˆ 2 , 0 , 1) / s q r t (r e a l) ;

% c a l u c l a t e and p l o t c o v a r i a n c e (c o r r e l a t i o n)
95 i f (c o r r e l a t i o n ==1)

c o r r e l = c o r r c o e f (N(: , 2 : t s a v e)) ;
f i g u r e (6) ; p c o l o r (c o r r e l) ; t i t l e (’ Patch P l o t of C o r r e l a t i o n mat r ix ’) ;
x l a b e l (’ t ’) ; y l a b e l (’ c o r r e l a t i o n c o e f f i c i e n t ’) ; c o l o r b a r ;
co l = [’ y ’ , ’ m’ , ’ c ’ , ’ r ’ , ’ b ’ , ’ k ’ , ’ g ’] ;

100 f i g u r e (7) ; c l f ; hold on ;
for j =1: a n z c o r r e l ,

p l o t (j t s a m p l e : t s a m p l e : t e n d , abs (c o r r e l (j , j : t s a v e 1)) , co l (j)) ;
end
g r i d ; hold o f f ;

105 t i t l e (’ some c o r r e l a t i o n f u n c t i o n s (a b s o l u t e v a l u e s) ’) ;
x l a b e l (’ t ime t ’) ; y l a b e l (’ norm . c o r r . c o e f f . n (t) n (t) ’) ;

end
end

110 % end CPUTIME
t1 = cput ime t0 ; d i sp (s p r i n t f (’ E lapsed Time : % f seconds ’ , t1)) ;

% p l o t f i n a l r e s u l t s
i f (r e a l 1)

115 f i g u r e (1) ;
e r r o r b a r (0 : t s a m p l e : t e n d , N mean (1 : t s a v e) , N std (1 : t s a v e)) ;
x l a b e l (’ t ’) ; y l a b e l (’ f i r s t moment ’) ; a x i s t i g h t ;
f i g u r e (2) ;
e r r o r b a r (0 : t s a m p l e : t e n d , N moment2 (1 : t s a v e) , N std moment2 (1 : t s a v e)) ;

120 x l a b e l (’ t ’) ; y l a b e l (’ second moment ’) ; a x i s t i g h t ;
f i g u r e (3) ;
e r r o r b a r (0 : t s a m p l e : t e n d , N var (1 : t s a v e) , N s t d v a r (1 : t s a v e)) ;
x l a b e l (’ t ’) ; y l a b e l (’ v a r i a n c e ’) ; a x i s t i g h t ;
% d i s t r i b u t i o n f u n c t i o n us ing h i s t o g r a m e s t i m a t e

125 % v a l i d i f p r o c e s s i s s t a t i o n a r y
f i g u r e (4) ;
xmin =min (min (N)) ; xmax=max (max (N)) ;
%%% use only h a l f of i n f o r m a t i o n smoothing of P
P=mean (h i s t (N(: , t s t a t i o n a r y : t s a v e) , ((xmax xmin) + 1) / 2) , 2) ; P=P / sum (P) ;

130 p l o t (P) ; x l a b e l (’ n ’) ; y l a b e l (’ P(n) ’) ;
t i t l e (’ e s t i m a t e d norma l i zed s t a t i o n a r y d i s t r i b u t i o n f u n c t i o n ’) ;
% d i s t r i b u t i o n f u n c t i o n wi th t ime
i f (pn ==1)

d i sp (’ P l o t t i n g P(n , t) : Always p r e s s a key for t he next t ime t ! ’) ;
135 for i =2: t s a v e ,

xmin =min (N(: , i)) ; xmax=max (N(: , i)) ;

408 APPENDIX C. LISTINGS FOR THE EXERCISES

P= h i s t (N(: , i) , (xmax xmin) + 1) ; P=P / sum (P) ;
f i g u r e (5) ;
p l o t (xmin : xmax , P) ; x l a b e l (’ n ’) ; y l a b e l (’ P(n , t) ’) ;

140 t i t l e (s p r i n t f (’ d i s t r i b u t i o n f u n c t i o n a t t =%i ’ , i t s a m p l e)) ;
pause ;

end
end

e l s e
145 % p l o t one r e a l i z a t i o n

p l o t (t r e a l (1 : sample2 1),N(1 , 1 : sample2 1)) ; a x i s t i g h t ;
end

%% for p a y r o l l p r o c e s s
150 for i =1: t s a v e ,

% a t t e n t i o n : we have to c o r r e c t for t s a m p l e 1 ! ! !
S(i)= mean (sum (N(: , 1 : i) , 2)) t s a m p l e ;
S s t d (i)= s td (t s a m p l e sum (N(: , 1 : i) , 2)) ;

end
155 e r r o r b a r (0 : t s a m p l e : t e n d , S (1 : t s a v e) , S s t d (1 : t s a v e) , ’ r ’) ;

a x i s t i g h t ; x l a b e l (’ t ime t ’) ; y l a b e l (’ t o t a l amount of wages paid ’) ;
t i t l e (’ t o t a l employee wages ’) ;

C.4.2 Quantum Harmonic Oscillator

f u n c t i o n [g , r]= qmharmoscimaster (n)
%g= be ta n ;
%r = a lpha n ;
a lpha =0 .45 ;

5 be ta = 0 . 4 ;
g= be ta n ;
r = a lpha n ;

C.4.3 Growth of competitive population

f u n c t i o n [g , r]= n o n l i n g r o w t h m a s t e r (n)
%g= be ta n ;
%r = a lpha n + gamma n (n 1);
a lpha = 0 . 1 ; be ta = 1 . 1 ; gamma =0 .01 ;

5 g= be ta n ;
r = a lpha n+gamma n (n 1);

C.4.4 Random Telegraph Process

f u n c t i o n [g , r]= t e l e g r a p h m a s t e r (n)
%g=b(1 n) ;
%r =an ;
a = 0 . 1 ; b = 0 . 9 ;

5 g=b (1 n) ;
r =a n ;

C.4.5 Monomolecular Chemical Reaction

C.5. LISTINGS FOR CHAPTER 5 409

f u n c t i o n [g , r]= r e a c t i o n m a s t e r (n)
%g=A
%r =k n
k = 1 ; A=100;

5 g=A;
r =k n ;

C.4.6 The Payroll Process

f u n c t i o n [g , r]= p a y r o l l m a s t e r (n)
%g=h
%r = l n
h = 0 . 2 ; l =0 .005 ;

5 g=h ;
r = l n ;

C.5 Listings for Chapter 5
C.5.1 Johnson Noise

% s d e o r n s t e i n Program to g e n e r a t e e x p e c t a t i o n v a l u e s of the
% O r n s t e i n Uhlenbeck p r o c e s s wi th the help of the s t o c h a s t i c
% Eule r a l g o r i t h m
c l e a r ; he lp s d e o r n s t e i n ; % Clea r memory and p r i n t heade r

5 s e t (0 , ’ D e f a u l t A x e s F o n t S i z e ’ , 1 6) ;

x s t a r t = i n p u t (’ En te r i n i t i a l va lue of x (0) ’) ;
q = i n p u t (’ En te r va lue of d r i f t q (1) ’) ;
D = i n p u t (’ En te r va lue of d i f f u s i o n c o n s t a n t D (1) ’) ;

10 tend = i n p u t (’ En te r f i n a l t ime in s (4) ’) ;
i s t e p = i n p u t (’ En te r number of t ime s t e p s (4) ’) ;
d e l t a t = i n p u t (’ En te r d e l t a t in s ([0 . 2 0 . 1 5 0 . 1 0 . 0 5]) ’) ;
n r e a l = i n p u t (’ En te r number of r e a l i z a t i o n s (1 0 0 0 0) ’) ;
t s t a r t =0;

15 m2= z e r o s (1 , i s t e p) ;
f2 = z e r o s (1 , i s t e p) ;
t0 = cput ime ;
% loop over d i f f e r e n t t ime s t e p s
for i s =1: i s t e p

20 ns tep = tend / d e l t a t (i s) ;
sigma = s q r t (D d e l t a t (i s)) ;
muconst = 1 q d e l t a t (i s) ;

% r e a l i z a t i o n s loop
25 for j = 1 : n r e a l

t = t s t a r t ;
x= x s t a r t ;
% g e n e r a t e v e c t o r of g a u s s i a n d i s t r i b u t e d random numbers
dw=randn (1 , ns t ep) sigma ;

30 for i =1: ns t ep
x=x muconst + dw(i) ;

end
m2(i s)=m2(i s)+ x x ;
f2 (i s)= f2 (i s)+ x ˆ 4 ;

410 APPENDIX C. LISTINGS FOR THE EXERCISES

35 % end of r e a l i z a t i o n loop
end
m2(i s)= m2(i s) / n r e a l ;
f2 (i s)= f2 (i s) / n r e a l ;
f2 (i s)= s q r t ((f2 (i s) m2(i s) m2(i s)) / n r e a l) ;

40 f p r i n t f (’ Time s t e p = % g n ’ , d e l t a t (i s)) ;
f p r i n t f (’ mean va lue = % g and s t a n d a r d d e v i a t i o n = % g n ’ , m2(i s) , f2 (i s)) ;

% end of loop of t ime s t e p s
end
t1 = cput ime t0 ;

45 f p r i n t f (’ CPU time = % g seconds n ’ , t1) ;
% p l o t r e s u l t s
e r r o r b a r (d e l t a t , m2, f2) ;

t i t l e (’ O r n s t e i n Uhlenbeck p r o c e s s ’) ;
x l a b e l (’ t ime s t e p ’) ;

50 y l a b e l (’ x ˆ 2 ’) ;
% s u b p l o t (2 , 1 , 2)
% e r r o r b a r (t ime , xmes2 , sdev2) ;
% x l a b e l (’ t ime ’) ;
% y l a b e l (’ x ˆ 2 ’) ;

55 hold on ;
% F i t
p= p o l y f i t (d e l t a t , m2 , 1) ;
xp =[0 d e l t a t] ;
yp= p o l y v a l (p , xp) ;

60 p l o t (xp , yp , ’ ’) ;
hold o f f ;
f p r i n t f (’ The e x p t r a p o l a t e d va lue for d e l t a t =0: x ˆ2 = % g n ’ , yp (1)) ;

C.6 additional Listings
C.6.1 Random Walk 1D

%%% Symmetric or asymmetr ic
%%% 1D Random Walk for one p a r t i c l e
%%%

5 hold o f f ;
c lg ;
c l e a r ;

r e a l i z a t i o n s =10;
10

N= i n p u t (’ How many s t e p s (1 0 0 0) ? ’) ;
p= i n p u t (’ P r o b a b i l i t y for a s t e p to the r i g h t (0 . 5) ? ’) ;
s t e p = i n p u t (’ Use f i x e d s t e p s i z e of 1 (o t h e r w i s e random s t e p s i z e in [0 , 1]) (1) ? ’) ;
s t e p s i z e =ones (N 1 ,1) ;

15 i f (s t e p ==1)
d i sp (’ S t e p s i z e i s 1 ! ’) ;
s tep max =1;

e l s e
s tep max = i n p u t (’ Maximum s t e p s i z e (1) ? ’) ;

20 d i sp (’ S t e p s i z e i s random betweeen [0 , 1] ! ’) ;
end

t = cput ime ;

C.6. ADDITIONAL LISTINGS 411

% l e t i t walk . . .
25

% do t he r e a l i z a t i o n s
for j =1: r e a l i z a t i o n s ,

% S t a r t p o s i t i o n
pos (j , 1) = 0 ;

30
% draw a l l random numbers a t once
random = rand (N 1 ,1) ;
i f (s t e p ==0)

s t e p s i z e = step max . rand (N 1 ,1) ;
35 end

% do t he s t e p s
for i =2: N,

i f (random (i 1) p)
40 pos (j , i)= pos (j , i 1)+ s t e p s i z e (i 1);

e l s e
pos (j , i)= pos (j , i 1) s t e p s i z e (i 1);

end
end

45
end
% p l o t the e l a p s e d CPU time
t = cput ime t ;
d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t)) ;

50
% p l o t the pa ths of the walker
hold on ;
for j =1: r e a l i z a t i o n s

p l o t (pos (j , :)) ;
55 end

p l o t ([1 N] , [0 0] , ’ r ’) ;

C.6.2 Random Walk 2D

%%% Symmetric
%%% 2D Random Walk for one p a r t i c l e
%%%

5 hold o f f ;
c lg ;
c l e a r ;

c o l o r =[’ b ’ , ’ k ’ , ’ y ’ , ’ g ’ , ’ m’ , ’ c ’] ;
10 r e a l i z a t i o n s =10;

N= i n p u t (’ How many s t e p s (1 0 0 0) ? ’) ;
%%p= i n p u t (’ P r o b a b i l i t y for a s t e p to the r i g h t (0 . 5) ? ’) ;
s t e p = i n p u t (’ Use f i x e d s t e p s i z e of 1 (o t h e r w i s e random s t e p s i z e in [0 , 1]) (1) ? ’) ;

15 s t e p s i z e =ones (N 1 ,1) ;
i f (s t e p ==1)

d i sp (’ S t e p s i z e i s 1 ! ’) ;
s tep max =1;

e l s e
20 s tep max = i n p u t (’ Maximum s t e p s i z e (1) ? ’) ;

d i sp (’ S t e p s i z e i s random betweeen [0 , 1] ! ’) ;

412 APPENDIX C. LISTINGS FOR THE EXERCISES

end

t = cput ime ;
25 % l e t i t walk . . .

% S t a r t p o s i t i o n s and a r r a y d e f i n i t i o n
pos (1 : r e a l i z a t i o n s , 1 : N, 1 : 2) = 0 ;

30 % do t he r e a l i z a t i o n s
for j =1: r e a l i z a t i o n s ,

% draw a l l random numbers a t once
% between 1 and 4
random = f l o o r (rand (N 1 , 1) 3 . 9 9 9) + 1 ;

35 i f (s t e p ==0)
s t e p s i z e = step max . rand (N 1 ,1) ;

end

% do t he s t e p s
40 for i =2: N,

%% r i g h t
i f (random (i 1)==1)

pos (j , i , 1)= pos (j , i 1,1)+ s t e p s i z e (i 1);
pos (j , i , 2)= pos (j , i 1 ,2) ;

45 %% l e f t
e l s e i f (random (i 1)==2)

pos (j , i , 1)= pos (j , i 1,1) s t e p s i z e (i 1);
pos (j , i , 2)= pos (j , i 1 ,2) ;
%% up

50 e l s e i f (random (i 1)==3)
pos (j , i , 2)= pos (j , i 1,2)+ s t e p s i z e (i 1);
pos (j , i , 1)= pos (j , i 1 ,1) ;
%% down

e l s e i f (random (i 1)==4)
55 pos (j , i , 2)= pos (j , i 1,2) s t e p s i z e (i 1);

pos (j , i , 1)= pos (j , i 1 ,1) ;
end

end

60 end
% p l o t the e l a p s e d CPU time
t = cput ime t ;
d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t)) ;

65 % p l o t the pa ths of the walker
hold on ;
a x i s squa re ;
maximum=max (max (max (abs (max (pos)) , abs (min (pos))))) ;
a x i s ([maximum maximum maximum maximum]) ;

70 for j =1: r e a l i z a t i o n s
p l o t (pos (j , : , 1) , pos (j , : , 2) , c o l o r (1+ rem (j , 6))) ;

end
% p l o t zero a x i s
p l o t ([maximum maximum] , [0 0] , ’ r ’) ;

75 p l o t ([0 0] , [maximum maximum] , ’ r ’) ;

C.6.3 Self-Avoiding Random Walk 2D

C.6. ADDITIONAL LISTINGS 413

%%% S e l f a v o i d i n g Symmetric
%%% 2D Random Walk for one p a r t i c l e
%%%
%%% A t t r i t i o n problem count

5 %%%
hold of f ; c l e a r ;
c o l o r =[’ b ’ , ’ k ’ , ’ y ’ , ’ g ’ , ’ m’ , ’ c ’] ;

10 r e a l i z a t i o n s = i n p u t (’ How many r e a l i z a t i o n s (1) ? ’) ;
N= i n p u t (’ How many walker s t e p s (2 0 0) ? ’) ;
l en = i n p u t (’ Length of the polymer (2 0 0) ? ’) ;
%%p= i n p u t (’ P r o b a b i l i t y for a s t e p to the r i g h t (0 . 5) ? ’) ;
s t e p s i z e = 1 ; d i sp (’ S t e p s i z e i s 1 ! ’) ; s tep max =1;

15
t = cput ime ;
% l e t i t walk . . .

% S t a r t p o s i t i o n s and a r r a y d e f i n i t i o n s
20 xpos (1 : r e a l i z a t i o n s , 1 : N+ 1) = 0 ; ypos (1 : r e a l i z a t i o n s , 1 : N+1)=0;

t r a p p e d (1 : N+1)=0;
a t t r i t i o n (1 : r e a l i z a t i o n s)=0 ;

% do t he r e a l i z a t i o n s
25 for j =1: r e a l i z a t i o n s ,

% do t he s t e p s
t r a p (1 : 4) = 1 ; f l a g =0;
while (sum (t r a p)==4 & f l a g = = 0)

a t t r i t i o n (j)= a t t r i t i o n (j)+1 ;
30 for i =2: N+1,

%% look for a d i r e c t i o n to walk to
%% (s e l f a v o i d i n g)
f l a g =1;
t r a p (1 : 4) = 0 ;

35 while (f l a g ==1)
random = f l o o r (rand (1) 3 . 9 9) + 1 ;
%% r i g h t
i f (random ==1)

xpos (j , i)= xpos (j , i 1)+ s t e p s i z e ;
40 ypos (j , i)= ypos (j , i 1);

t r a p (1) = 1 ;
%% l e f t

e l s e i f (random ==2)
xpos (j , i)= xpos (j , i 1) s t e p s i z e ;

45 ypos (j , i)= ypos (j , i 1);
t r a p (2) = 1 ;
%% up

e l s e i f (random ==3)
ypos (j , i)= ypos (j , i 1)+ s t e p s i z e ;

50 xpos (j , i)= xpos (j , i 1);
t r a p (3) = 1 ;
%% down

e l s e i f (random ==4)
ypos (j , i)= ypos (j , i 1) s t e p s i z e ;

55 xpos (j , i)= xpos (j , i 1);
t r a p (4) = 1 ;

end
% check s e l f a v o i d i n g up to l e n g t h "len"

414 APPENDIX C. LISTINGS FOR THE EXERCISES

f l a g =0;
60 for k= i 1: 1:max (1 , (i 1) l en) ,

i f (xpos (j , i)== xpos (j , k) & ypos (j , i)== ypos (j , k))
f l a g =1;
break ;

end
65 end

%% Check i f t r a p p e d
i f (f l a g ==1 & sum (t r a p)==4)

% disp (s p r i n t f (’ I am t r a p p e d and can t e scape a f t e r % i s t e p s ! ’ , i)) ;
t r a p p e d (i)= t r a p p e d (i)+1 ;

70 f l a g =0;
end

end

i f (sum (t r a p)==4)
75 break ;

end
% end s t e p loop

end

80 end
d i sp (s p r i n t f (’ I d id % i s t e p s in r e a l i z a t i o n # % i ! ’ , i 1, j)) ;
e n d p o i n t (j)= i ;

% end r e a l i z a t i o n s loop
85 end

% p l o t the e l a p s e d CPU time
t = cput ime t ;
d i sp (s p r i n t f (’ n CPU Time : % f seconds ’ , t)) ;

90
% p l o t the pa ths of the walker
hold on ;
a x i s squa re ;
maximum=max (abs (max (max (xpos))) , abs (min (min (xpos)))) ;

95 maximum=max (maximum , max (abs (max (max (ypos))) , abs (min (min (ypos))))) ;
a x i s ([maximum maximum maximum maximum]) ;
% p l o t zero a x i s
p l o t ([maximum maximum] , [0 0] , ’ r ’) ;
p l o t ([0 0] , [maximum maximum] , ’ r ’) ;

100 % p l o t the t r a j e c t o r i e s
for j =1: r e a l i z a t i o n s

p l o t (xpos (j , :) , ypos (j , :) , c o l o r (1+ rem (j , 6))) ;
% mark the e n d p o i n t
p l o t (xpos (j , e n d p o i n t (j)) , ypos (j , e n d p o i n t (j)) , ’ r s ’) ;

105 end
t i t l e (’ S e l f Avoiding Random Walk in 2 Dimensions ’) ;

% p l o t the number of t r a p p e d walks
f i g u r e ;

110 p l o t (1 : N+1, t r a p p e d (1 : N+ 1) , ’ d ’) ;
x l a b e l (’ t r a p p e d a f t e r s t e p s ’) ;
y l a b e l (’ number of t r a p p e d walks ’) ;

115 % A t r i t i o n P l o t s
h i s t (a t t r i t i o n , 2 0) ;

C.6. ADDITIONAL LISTINGS 415

t i t l e (’ A t t r i t i o n problem ’) ;
x l a b e l (’ number of t r i a l s per r e a l i z a t i o n ’) ;
d i sp (s p r i n t f (’ mean number of walks b e f o r e no t r a p p i n g occur s : % f + % f ’ , . . .

120 mean (a t t r i t i o n) , s td (a t t r i t i o n) / s q r t (r e a l i z a t i o n s))) ;

416 APPENDIX C. LISTINGS FOR THE EXERCISES

Appendix D

Solutions to exercises

D.1 Solutions for Chapter 1

SOLUTION TO EXERCISE 4.1

Photoabsorption

SOLUTION TO EXERCISE 4.2

Monte-Carlo Integration – Speed and Accuracy – photoabsorption.m

1. Hit and Miss Method – hitandmiss.m, hitandmiss2.m
The estimate for the integral is Ii ni n, where ni are the number of hits in one realization. By doing N
realizations of the method, you estimate the integral by using the mean of the generated Ii i 1 N. The
mean is estimated by the well known formula

I
1
N

N

i 1
Ii

(Use the function mean() from Matlab.) The error of the individual trial Ii gets estimated by using the standard
deviation. We estimate the standard deviation 'i by using

'Ii

1
N 1

N

i 1
Ii I 2

(We can use the Matlab function std() for calculating the standard deviation.) This is the error of the indi-
vidual trial Ii, not the error of the mean value I calculated above. To that end, we have to use the central limit
theorem and get

'I 'Ii N

Some example outputs of the program:

left: One realization using up to 5000 points in steps of 50.
right: Up to 10000 realizations using stepsize 100 and 50 points for each realization.

417

418 APPENDIX D. SOLUTIONS TO EXERCISES

0 2000 4000 6000 8000 10000 12000
3.1

3.15

3.2

3.25

number of realizations

es
tim

at
io

n
of

 P
i

Estimating Pi using Hit and Miss MCI

0 2000 4000 6000 8000 10000 12000
0

0.01

0.02

0.03

number of realizations

st
an

da
rd

 d
ev

ia
tio

n

0 2000 4000 6000 8000 10000 12000
0

2

4

6

cp
ut

im
e

in
 s

ec
on

ds

number of realizations

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

number of points

Es
tim

at
e

of
 P

i

Hit and Miss Method for Pi using 1 realization

0 1000 2000 3000 4000 5000 6000
!0.5

0

0.5

1

number of points

Er
ro

r o
f t

he
 E

st
im

at
e

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

number of points

CP
U

tim
e

in
 s

ec
on

ds

2. Standard Method – mcistandard.m
Now we use the formula Ii 1

n
n
i 1 f xi b a to estimate the integral. The mean value is

Ii
1
n

n

i 1
Ii

and the standard deviation of the individual Ii is

'Ii

1
N 1

N

i 1
Ii I 2 'Ii

n

where we have used the central limit theorem for the last equation to get the error of the mean 'Ii
Now we calculate several (N) realizations of the above algorithm to get a better estimate of the integral. The
mean of the ensemble of realizations is

IN
1
N

N

i 1
Ii

And the error of the mean is

'IN

1
N 1

N

i 1
Ii IN

2 'Ii
N

Again we have used the central limit theorem and assumed that we have a “representative” 'Ii to get the last
equality.
Some example outputs of the program:

left: Using increasing ensemble size from 1 to 5000 in steps of 100. Always using 50 points in the interval (a,b).
right: The standard deviation and the distance to the exact result for the same run as in the left figure.

0 1000 2000 3000 4000 5000 6000
3.1

3.15

3.2

3.25

3.3
Estmates for the integral using Standard MCI

ensemble size

Es
tim

at
io

n
of

 P
I

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50
CPU time estimate

ensemble size

CP
U

tim
e

in
 s

ec
.

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5
x 10!3 Standard Deviation against ensemble size

0 1000 2000 3000 4000 5000 6000
!0.035

!0.03

!0.025

!0.02

!0.015

!0.01

!0.005

0
distance to exact result versus ensemble size

The CPU time used plotted versus the accurracy of the estimate.

D.2. SOLUTIONS FOR CHAPTER 2 419

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

5

10

15

20

25

30

35

40

45

50
Accuracy versus CPU time

CP
U

Ti
m

e

Accuracy

SOLUTION TO EXERCISE 4.3

Eulers Constant using Monte-Carlo Algorithm – darts.m

SOLUTION TO EXERCISE 3.3

The Standard Deviation - variance.m
As you may soon recognize, the second and the third formula produce by far the biggest errors, even for small samples
using very harmless distributions. But the first and the fourth method seem to perform equally well.

For a good and extensive discussion of this problem see the good paper by [Chan et al., 1983]. They discuss also
some other algorithms for calculating the variance.

D.2 Solutions for Chapter 2

SOLUTION TO EXERCISE 3.1

Random-Number Generator Check - momentsrand.m, pokertest.m

Moments of the rand() function of Matlab
Example output for the first 10 moments of rand() using 5000 random numbers. Shown are the mean mo-
ments of the ensemble, the error (standard deviation) of the mean and in the last plot the distribution as a
histogram using 50 bins.

420 APPENDIX D. SOLUTIONS TO EXERCISES

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8
Moments of the uniform distribution

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
standard deviation of the moments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150
Histogram of the distribution

Poker Test
Shown are the results for a Poker test using 20000 hands, each using 5 random numbers (=cards). Only no pairs
(=0), pairs (=1), three of a kind (=3) and four of a kind (=4) are counted (5 of a kind is obviously not allowed).
The numbers above the bars are the actual number of hands found in the ensemble. The second plot shows the
difference of the probability in our ensemble to the correct theoretical result.

1 2 3 4 5
0

5000

10000

15000
Poker test for the random number generator

11419

7982

579 20 0

of a kind

nu
m

be
r o

f h
an

ds

0 1 2 3 4 5 6
!0.04

!0.02

0

0.02

0.04

0.06

0.08

of a kind

error of the generated hands

D.2. SOLUTIONS FOR CHAPTER 2 421

SOLUTION TO EXERCISE 3.2
Galton Board and Pascal Triangle - galton board.m
Examples of the Galton Boards. We plot the boxes at the lower end of the Galton board versus the number of balls,
which have fallen into each box. The red line indicates the normal distribution with the same variance and the maximum
height as the ensemble generated.

left: using 10 rows of pins and 1000 balls
right: using 20 rows of pins and 1000 balls

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

The Galton Board

box number

nu
m

be
r o

f b
al

ls

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

140

160

The Galton Board

box number

nu
m

be
r o

f b
al

ls

using 200 rows and 16000 balls

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

The Galton Board

box number

nu
m

be
r o

f b
al

ls

The connection to the Pascal trinagle is obvious, if you know how to get the number of balls in the next row (say
n+1) from the number of balls in the boxes of the previous row (say n). Thats exactly like in the Pascal triangle:

1
1 1

1 2 1

422 APPENDIX D. SOLUTIONS TO EXERCISES

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

You start with row 2 of the Pascal triangle, which corresponds to one pin (1 row) in the Galton board. The sum in
each row is 2N in row N. Therefore the probability for each box of a row of the Galton board is just the corresponding
number of the Pascal triangle divided by 2N

D.3 Solutions for Chapter 3

SOLUTION TO EXERCISE 5.1
Random-Number Generator - linear con.m
All plots use the linear congruential method with the parameters given in the assignment. The input parameters are:
Initial seed 1 and 1000 random numbers are generated.

The first plots show the generated random numbers, the second ones show the histogram of the distribution. The
third ones show 2D vectors and the fourth ones 3D vectors from the generated sequence of random numbers.

parameter set 1

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
Histogram of the random numbers

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
generated uniform random numbers

number

ra
nd

om
 n

um
be

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2D vectors of the random numbers

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

3D vectors of the random numbers

parameter set 2

D.3. SOLUTIONS FOR CHAPTER 3 423

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
Histogram of the random numbers

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
generated uniform random numbers

number

ra
nd

om
 n

um
be

r

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2D vectors of the random numbers

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

3D vectors of the random numbers

At first you dont see any difference between the two and you dont think of any problems. But if you plot the 3D
vectors and use the rotate3d command with Matlab to rotate the 3D plot, you can see plots like the ones below.
On the left the plot is rotated until you see the planes and on the right you wouldnt expect correlations. Both plots use
the same sample of 5000 random numbers. This clearly visualizes the correlation between successive triple random
numbers.

0
0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

3D vectors of the random numbers

0 0.2 0.4 0.6 0.8 1 0

0.5

1

0

0.2

0.4

0.6

0.8

1

3D vectors of the random numbers

SOLUTION TO EXERCISE 5.2
Poisson distribution - poisson.m
The first figure shows the generated Poisson distributed random numbers. The second figure shows two dimensional

424 APPENDIX D. SOLUTIONS TO EXERCISES

vectors of Poisson distributed random numbers. The last (third) figure finally shows the histogram of the generated
sequence and the exact Poisson distribution.

The parameters for this run have been:

$ 10 and N 1000

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25
the generated sequence of Poisson distributed random numbers

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
2D Poisson distribution

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140
Histogram of generated numbers compared with theory

Just a few comments about the method used. Often the Poisson distribution is written as

P$t n e $t $t n

n!

with the parameter $t. We have chosen t to be one and so referring to a unit interval of time. In that sense $ is the
average number of events per unit time (and as you already know, it is actually the mean of the Poisson distribution).

Now, the algorithm used is based on the fact that if the time intervals Ti between events are from exp $Ti , then
the number of events occurring in an unit interval of time is from P$ n (Poisson distributed).

To proof that, you need the theorem: if X1 Xn are mutually independent random variables with the exponential
density

p x $e $x

D.3. SOLUTIONS FOR CHAPTER 3 425

then the sum SN : X1 Xn has a density

gn x $
$x n 1

n 1 !
e $x

(This is a so called gamma density.) The proof can be done by induction. For the exponential distribution function
F x 1 e $x we get the distribution function of SN as

Gn x 1 e $x 1
$x
1!

$x n 1

n 1 !

The second step is to introduce a new family of random variables N t : N t is the number of indices k 1 such
that Sk t (Sk is the sum opf exponentially distributed r.v. from above.) Because Sn has the distribution Gn x (see
theorem above), the probability of events N t n has the distribution

P N t n Gn t Gn 1 t e $t $t n

n!

That is exactly a Poisson distribution!
For details see [Feller, 1971, page 8-12].

SOLUTION TO EXERCISE 5.3
Acceptance-Rejection-Method - rejection.m
First of all we have to note that the volume of the n-dimensional sphere is given by

VR n Rn V1 n Rn "n 2

6 n 2 1

where 6 x is the well known Gamma function:

6 x :
.

0

e t tx 1dt lim
n .

nx n 1 !
x x 1 x 2 x n 1

for x ¿0

(for all real numbers, except 0 1 2 We have 6 x 1 x6 x and therefore for natural numbers n 0 6 n
1 n! As you can see in the figure, the volume of the sphere (red diamonds/line) is decreasing by going to higher
dimensions (keeping the radius R 1 constant).

0 1 2 3 4 5 60

20

40

60

80

100

120
The Gamma Function

0 5 10 15 200

5

10

15

20

25

30

35
volume and surface of the hypersphere

dimension

vo
lu

m
e/

su
rfa

ce

radius R=1

You get the surface of the sphere by just differentiating the formula above and get (see blue diamonds/line)

SR n
d

dR
VR n nRn 1 "n 2

6 n 2 1

426 APPENDIX D. SOLUTIONS TO EXERCISES

0 100 200 300 400 5004

4.05

4.1

4.15

4.2

4.25

4.3
volume of the 3 dimensional sphere

realizations

vo
lu

m
e

0 100 200 300 400 5000.5

1

1.5

2

2.5

3

3.5

4

4.5
volume of the 10 dimensional sphere

realizations

vo
lu

m
e

The blue lines represent the sample mean and the sample variance and the red line is the exact value. Both figures are
made using 500 realizations each drawing 10000 points in the n-dimensional space. The result for the left figure was
V 4 1910 0 0017 (exact V 4 1888), for the right figure we got V 2 534 0 022 (exact V 2 550).

The algorithm for the surface of the hyper sphere is exactly the same, except that in the case of an accepted hit,
you have to divide the accepted coordinates by the radius R. This gives you a point on the surface of the sphere.

0 5 10 15 2010!8

10!6

10!4

10!2

100
quotient of Vsphere / Vcube

dimension

As you can see from the plots above, the method is getting worse with increasing dimension, because Vhypersphere Vhypercube
is going to zero for large n.

SOLUTION TO EXERCISE 5.4
Importance Sampling - importance.m
The idea of the importance sampling here is instead of sampling uniform random numbers and putting it into the
function, we use normally distributed random numbers.

A very good book about importance sampling is [Kalos und Whitlock, 1986, Chapter 3 and 4.1].
Standard sampling:

IS
c
N

N

i 1
f 5

where the 5 are from a uniform distribution.
Easy to implement and understand, but the error is usually very big.

D.3. SOLUTIONS FOR CHAPTER 3 427

Importance sampling:
Here we suggested to use a normal distribution instead of the uniform one for the 5. Then the formula reduces
to:

II
1
N

N

i 1
5

2"'2

2
1
2

"
2N

N

i 1
5

First of all you have to realize that the randn() function of Matlab produces normally distr. random numbers
with mean µ 0 and variance '2 1. It also produces random numbers in the open interval . . and not,
like desired, in the interval 0 .

To correct for that, use the fact, that
.

0

ve v2
dv

1
2

.

.

v e v2

(because the function is symmetric with respect to the y-axis.) Matlab produces numbers from

p x
1

2"'2
exp

x µ 2

2'2 µ 0 '2 1

Now we have to transform this density to one with variance '2 1 2 which then has the form appearing in our
integral e v2 We just divide the random number generated with randn() by 2

Then we accept only random numbers falling in the interval c c because we are integrating over that interval
(we have to take this into account, when calulating moments). Actually we do not need that restriction, but it
demonstrates some additional complications, which could arise in actual problems.

The last step is to correct for the additional factor 2"'2 introduced by the normal distribution, and the factor
1 2 because of the extended interval. This gives an overall factor of these two corrections of "

2 .

The first two figures show a run with 15.000 points (normally distributed random numbers) and a maximum cut-
off cmax 10 That means I have done many runs with increasing cmax The red boxes indicate the results of the
importance sampling, the blue line represents the exact result.

The figure on the right gives the systematic error involved, if the cut-off c is used for the calculation.

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7
value of the integral versus the cutoff value

0 2 4 6 8 1010!40

10!30

10!20

10!10

100
systematic error because of cutoff

On the left I have plotted the function to be integrated. On the right there is again a result of a run using 1000
points: the blue line is the exact result, the red boxes are the importance sampling results and the black boxes are the
simple sampling results.

428 APPENDIX D. SOLUTIONS TO EXERCISES

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
the function v e!v2

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7
value of the integral versus the cutoff value

short discussion about (exact) variance:
The variance of the importance sampling method can be analytically calculated for this case. The general formula is

'2
b

a

g2 x
f 2 x

f x dx I2

where

I
b

a

g x
f x

f x dx

is the integral we are looking for (This is just the second moment minus the first moment squared, as usual.).
In our case the first moment (the solution) is just 1 2 for the interval 0 to . For an interval from 0 to c we have

c

0

ve v2
dv 1 2

e c2

2

The second moment is just
c

0

v2e dv2
dv

2e dc2 d3 2c "erf dc d
4d5 2

(erf c is the error function.)
With the help of the above formulas, we can discuss three possible sampling functions methods:

– we use as an example c 10 –

1. the standard sampling using uniform deviates f x 1
b a 1 c:

'2
c

0

v2e 2v2

1 c2
1
c

dv
1
4

1 316642671

2. use importance function f x 1
2"

e
v2
2 :

'2
c

0

v2e 2v2

1 2"e v2

1
2"

e
v2
2 dv

1
4

0 3545997878

3. use importance function f x e v2 :

'2
c

0

v2e 2v2

e 2v2 e v2
dv

1
4

0 1931134628

D.3. SOLUTIONS FOR CHAPTER 3 429

As you can clearly see, the variance is greatly reduced by choosing an importance function very close to the function
to be integrated. And of course the simple sampling Monte Carlo integration produces a big variance compared to the
importance sampling method (here almost a factor of 4 to 6.).

SOLUTION TO EXERCISE 5.5
First Passage Times (fpt) - first passage.m
The left figure shows a run using R 5 and 10.000 walks. The mean first passage time is 30 03 steps.

On the right, I have done many runs with different R and calculated the mean first passage time for each run. You
can see the exponential growth of the mean fpt.

0 50 100 150 2000

100

200

300

400

500

600
first passage times (steps) for radius R=5

first passage time (steps)

co
un

ts

0 5 10 15 200

50

100

150

200

250

300

350

400

450
First Passage Times for different Radii (1000 walks)

Radius R

m
ea

n
fir

st
 p

as
sa

ge
 ti

m
e

SOLUTION TO EXERCISE 5.6
Scaling Behavior of Random Walk in 2D and 3D - rw scaling.m
The function to be fitted is:

R2 aNb

For the plots below we used 100 realizations for each length N We started with length 50 and the last length
calculated was 2000

102 103

102

103

End!to!End Distance in 2 Dimensions

length of the walk N

En
d!

to
!E

nd
 D

ist
an

ce
 <

R2 >

102 103

102

103

End!to!End Distance in 3 Dimensions

length of the walk N

En
d!

to
!E

nd
 D

ist
an

ce
 <

R2 >

Results of the 2D and 3D calculations:
2D scaling: a 1 1051 and b 0 9833

430 APPENDIX D. SOLUTIONS TO EXERCISES

3D scaling: a 0 9829 and b 1 0018

A second run was made, using 500 realizations for each length of the random walk. We started with length 10 and
went up to length 10 000 (using 50 (in 3D) and 30 (in 2D) intermediate lengths). It took a total of 20 900 seconds to
calculate on a Pentium 200MMX processor (Matlab 5.0).

101 102 103 104101

102

103

End!to!End Distance in 3 Dimensions

length of the walk N

En
d!

to
!E

nd
 D

ist
an

ce
 <

R2 >

102 103 104

102

103

104
End!to!End Distance in 2 Dimensions

length of the walk N

En
d!

to
!E

nd
 D

ist
an

ce
 <

R2 >

For the long runs, the results are:

2D scaling: a 0 996679 and b 1 001098

3D scaling: a 1 005113 and b 0 999942

SOLUTION TO EXERCISE 5.7
Percolation in 2D and Cluster Algorithms - percolation.m

The first two figures show 20 20 configurations with and without a spanning cluster. For the left figure we used
p 0 5 and for the right figure p 0 55

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

1 0 2 2 2 0 0 0 3 3 3 0 0 0 0 0 4 0 5 5
0 0 2 0 2 0 6 6 0 3 3 0 0 6 6 6 0 8 0 0
9 9 0 0 0 0 0 6 6 0 0 6 6 0 6 0 6 0 12 12
0 9 0 6 6 6 6 6 6 0 6 6 6 6 6 6 6 6 0 12
0 0 0 6 6 0 6 0 0 6 6 0 0 0 6 0 0 6 0 12
0 0 0 6 6 6 6 6 0 0 0 6 6 0 6 0 0 6 0 0
17 0 18 0 6 6 0 6 6 6 6 0 6 6 6 6 0 6 0 19
0 0 0 0 6 0 6 0 0 0 6 6 6 0 6 6 0 0 0 0
0 0 6 6 6 6 6 0 6 6 6 6 6 0 0 6 0 23 0 24
6 6 6 6 0 0 0 0 6 0 0 6 6 6 0 6 6 0 0 0
6 0 6 0 6 0 0 6 0 0 0 0 6 6 0 0 6 0 0 0
0 6 6 6 6 6 6 6 0 29 29 0 6 0 0 0 6 0 0 30
0 0 6 6 0 6 0 6 0 29 29 29 0 31 31 31 0 0 0 0
6 0 6 6 6 6 0 6 0 29 29 29 0 0 31 31 0 0 0 33
6 6 6 0 0 0 0 0 34 0 0 0 34 34 0 0 33 33 33 33
6 6 6 6 6 6 0 34 34 34 0 34 34 0 33 33 33 33 0 0
6 0 0 0 6 0 40 0 0 34 34 34 34 0 33 0 0 33 33 33
6 6 0 6 6 0 0 0 34 34 34 34 0 43 0 44 44 0 0 33
0 0 45 0 6 6 0 0 34 34 34 34 0 0 44 44 44 44 0 33
0 47 0 48 0 0 34 34 34 0 0 34 34 0 44 0 44 44 44 0

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

1 0 1 1 1 0 3 3 0 3 3 3 3 0 3 0 3 0 3 0
1 1 0 1 0 0 0 3 3 3 3 3 3 0 3 3 3 3 3 0
1 1 1 1 1 1 0 3 3 0 0 0 0 3 3 3 3 3 3 0
0 1 1 1 1 0 9 0 3 3 3 3 3 3 0 3 0 3 3 0
0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 3 3 0 0 3
3 3 0 0 0 12 0 13 0 3 3 0 3 3 3 3 3 3 3 3
3 3 3 3 3 0 3 0 3 0 3 3 3 3 3 3 3 0 0 0
3 3 3 3 0 3 3 3 3 0 3 3 0 3 3 0 3 3 3 3
3 3 0 3 0 0 3 0 3 3 3 3 3 0 0 0 0 3 0 3
3 3 0 0 0 3 3 3 3 3 3 0 0 0 3 3 3 3 3 3
3 0 21 0 0 0 3 3 0 3 3 0 3 3 3 3 3 3 0 3
3 3 0 3 3 3 3 0 0 3 0 0 0 3 0 0 3 3 0 3
0 3 3 0 3 0 3 3 3 3 0 3 0 0 25 25 0 0 0 0
3 3 0 3 3 3 0 3 0 0 3 3 0 3 0 0 3 0 0 0
3 3 3 0 3 3 3 3 3 3 3 3 0 3 3 3 3 0 3 0
3 3 3 3 3 0 3 3 0 3 0 3 3 3 0 3 3 3 3 3
3 3 3 0 3 3 3 3 0 0 3 3 3 3 3 3 3 3 3 0
0 3 3 3 3 0 3 3 0 0 0 3 0 3 0 3 0 3 0 33
0 0 3 0 3 3 0 0 34 34 0 3 3 3 0 0 3 3 0 0
0 0 3 3 3 0 34 34 34 0 0 3 3 3 0 3 3 3 0 38

The following two figures are created using:

1. figure on the left:
N 20 p from 0 3 to 0 9 with stepsize 0 02 and 20 realizations each.

2. figure on the right:
N 30 p from 0 3 to 0 9 with stepsize 0 02 and 20 realizations each.

D.3. SOLUTIONS FOR CHAPTER 3 431

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
2D percolation with size 20

occupation probability

sp
an

ni
ng

 c
lu

st
er

 p
ro

ba
bi

lity

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1
2D percolation with size 30

occupation probability

sp
an

ni
ng

 c
lu

st
er

 p
ro

ba
bi

lity

To estimate the critical probability pc, you have to extract pc from the figures above. There are many ways of
doing it. One would be to fit a sigmoidal function

p x a
1

1 e a x 0 5 1 2

or a tangent hyperbolicus

p x a tanh a x 2 0 5 1 2 1
1 e a x 0 5

1 e a x 0 5 2

a is the parameter to fit.

SOLUTION TO EXERCISE 5.8
The Einstein Solid and the Boltzmann Distribution - einstein solid.m

A typical 20x20 plane of the Einstein solid after 10000 jumps.

1 2 0 0 0 3 5 2 0 1 1 1 0 0 1 1 2 0 1 0
2 0 2 1 4 1 1 0 1 0 2 2 0 1 0 4 0 0 1 0
3 1 3 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1
0 1 0 0 0 0 1 2 1 1 0 0 1 1 1 2 0 0 0 1
0 0 6 1 0 4 0 0 1 1 1 0 0 0 0 0 0 0 0 2
0 0 2 1 9 3 0 1 2 1 0 0 3 0 6 1 2 0 0 0
0 2 2 1 0 2 0 0 0 0 0 2 4 0 0 0 0 0 1 1
0 0 0 6 1 0 0 6 1 1 0 0 0 0 0 0 3 0 1 0
2 0 1 0 0 2 0 1 0 2 0 0 0 1 3 0 0 1 0 3
0 1 1 0 2 0 0 0 0 1 0 2 1 2 2 1 0 2 2 1
1 0 2 0 1 1 2 0 0 0 4 1 1 3 0 0 2 0 4 1
1 0 0 0 1 0 3 2 0 0 0 0 0 0 0 0 1 0 1 1
0 2 2 0 1 3 0 2 1 2 1 0 0 1 2 0 0 2 2 3
0 2 0 0 0 3 2 0 1 3 0 0 0 2 0 0 0 1 1 4
2 0 0 0 0 5 0 3 0 0 0 1 0 0 0 2 2 2 1 2
0 4 1 0 5 0 0 0 1 0 0 0 1 4 0 5 2 0 0 0
1 0 1 2 0 0 0 0 2 0 0 5 0 1 2 1 0 2 0 0
0 0 0 1 0 1 0 0 1 5 0 4 0 0 0 4 1 0 4 1
0 1 0 3 4 0 1 2 1 5 0 3 9 0 0 1 0 3 0 2
1 3 1 0 7 0 0 2 0 0 1 0 0 2 0 3 0 1 0 2

432 APPENDIX D. SOLUTIONS TO EXERCISES

On the next 9 figures you can see the time development of a 20x20 grid after 10, 20, 30, 40, 50, 60, 70, 150 and
20000 steps (or jumps). Although it is a contour plot and not the whole cell is filled with the same color (which would
make it easier to view), you can still see the pile up of quantas in individual cells. On the other side more and more
cells are unoccupied and after reaching equilibrium we are left with most of the cells unoccupied.

The last figure in this sequence is a semilogarithmic plot of the distribution of number of quantas in the cells (red
curve). The blue one is a least square fit to the Boltzmann distribution, which is in excellent agreement.

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 10 steps

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 20 steps

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 30 steps

0

0.5

1

1.5

2

2.5

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 40 steps

0

0.5

1

1.5

2

2.5

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 50 steps

0

0.5

1

1.5

2

2.5

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 60 steps

0

0.5

1

1.5

2

2.5

D.4. SOLUTIONS FOR CHAPTER 4 433

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 70 steps

0

0.5

1

1.5

2

2.5

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 150 steps

0

0.5

1

1.5

2

2.5

3

3.5

5 10 15 20
2

4

6

8

10

12

14

16

18

20
 Lattice after 20000 steps

0

1

2

3

4

5

6

7

0 2 4 6 8 10 1210!1

100

101

102

103
distribution of sites containing N quantas

quantas N

nu
m

be
r o

f s
ite

s

As an example we have also done a caluclation with a 40x40 plane. On the left is the filled contour plot and on the
right is the same configuration using a simple contour plot.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0

1

2

3

4

5

6

7

8

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

D.4 Solutions for Chapter 4

SOLUTION TO EXERCISE 6.1

434 APPENDIX D. SOLUTIONS TO EXERCISES

Linear one-step process - quantized harmonic oscillator in a radiation eld - onestepfast.m, qmhar-
moscimaster.m

First of all we want to summarize some of the results for the one-step processes (also called birth-and-death
processes). They are goverend by the following Master-equation (the phase space is discrete)

3
3t

P n t r n P n 1 t g n P n 1 t r n g n P n t

The solutions are continous in time, in contrast to the random walks discussed in the first few chapters. We can rewrite
the Master-equation, using the transition matrix

nn : gn -n n 1 rn -n n 1 for n n and

nn : rn gn

as
3
3t

P n t n n P n t

There are three classes of one-step processes, depending on the interval of n:
1. . . , no limits on n.
2. 0 . , one sided open interval.
3. 0 N , finite interval.

We can take these boundary conditions into account by supplying the correct equations for the boundaries, or in most
cases it is sufficient to just set e.g. r 0 0 and g 1 0 or e.g. r N 1 g N 0.

The exact equation for the first moment is:

d
dt

n r n g n FIRST MOMENT

and for the second moment
d
dt

n2 2 n g n r n r n g n SECOND MOMENT

With these two solutions we can easily calculate the equation for the variance.
There are some interesting special cases, depending on the form of the gain (g n) and the loss (r n) probability:

(RW stands for Random Walk)

g n r n name
const. 0 Poisson Process

q const. q const. symmetric RW (diffusion)
q1 const. q2 const. asymmetric RW (diffusion with external force)

0 &n radioactive decay
q const. kn monomolecular chemical reaction

+n *n general linear (e.g. QM harm. osci., payroll)
higher orders in n higher orders in n nonlinear (e.g. competitive growth)

Remark: sometimes one refers to the nonlinearity of g n and r n by calling it a nonlinear Master-equation, but do
not forget that the Master-equation is always linear in P n t ! For the linear case, one must have at least one boundary,
otherwise the transition probabilities g n or r n become negative. But most of the physical systems have a natural
boundary, like the radioactive decay at n 0.

The stationary solution (t .) is given by:

Pstat n

n 1

i 0
g i

n

i 1
r i

Pstat 0 for n 0

and

Pstat n

n 1

i 0
r i

n

i 1
g i

Pstat 0 for n 0

D.4. SOLUTIONS FOR CHAPTER 4 435

The first solution is for the class 2 and 3 above and the second solution is only for the class 1. Pstat 0 is given by the
normalization condition, e.g. for class 2

.

i 0
Pstat i 1

If we take the Fokker-Planck limit for the Random Walk (both transition rates constant) we get a diffusion equation.
The same limit for the Poisson process (no loss transition) does not exist!

For the quantized harmonic oscillator we have for the first moment (The initial condition will be always n 0 N0

d
dt

n * + n n t N0e * + t and

d
dt

n2 2 * + n2 + * n

which has the solution

n2 t
+ *
+ *

N0e * + t 1 e * + t N2
0 e2 * + t

(Remark: As you can see, we have a closed hierachy of moment equations.)
The stationary solution is

Pstat n const.
*
+

n

Here are some results of the simulation:

+ * 0 5 N0 50 tEND 500 1 realization %t 1

0 100 200 300 400 500

100

200

300

400

500

600

t

fir
st

 m
om

en
t

0 100 200 300 400 500

0.5

1

1.5

2

2.5

3

3.5
x 105

t

se
co

nd
 m

om
en

t

+ * 0 5 N0 50 tEND 100 100 realizations %t 2

0 20 40 60 80 100

45

50

55

60

65

t

fir
st

 m
om

en
t

0 20 40 60 80 1000

1000

2000

3000

4000

5000

6000

t

va
ria

nc
e

0 20 40 60 80 100
!1

!0.5

0

0.5

1

1.5

2

2.5
x 104

t

se
co

nd
 m

om
en

t

+ 0 52 * 0 48 N0 500 tEND 150 1 realization %t 1

436 APPENDIX D. SOLUTIONS TO EXERCISES

0 50 100 1500

100

200

300

400

500

t

fir
st

 m
om

en
t

0 50 100 1500

0.5

1

1.5

2

2.5 x 105

t

se
co

nd
 m

om
en

t

+ 0 51 * 0 49 N0 50 tEND 100 100 realizations %t 2

0 20 40 60 80 100

10

15

20

25

30

35

40

45

50

t

fir
st

 m
om

en
t

0 20 40 60 80 1000

100

200

300

400

500

600

700

800

900

t

va
ria

nc
e

0 20 40 60 80 100
!2000

!1000

0

1000

2000

3000

4000

t

se
co

nd
 m

om
en

t

+ 0 53 * 0 47 N0 50 tEND 50 300 realizations %t 1

0 10 20 30 40 50
5

10

15

20

25

30

35

40

45

50

t

fir
st

 m
om

en
t

0 10 20 30 40 500

50

100

150

200

250

t

va
ria

nc
e

0 10 20 30 40 50

0

500

1000

1500

2000

2500

t

se
co

nd
 m

om
en

t

20 30 40 50 60 700

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

n

P(
n,

t)

distribution function at t=2

0 20 40 60 80 1000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

n

P(
n,

t)

distribution function at t=10

0 20 40 60 80 1000

0.05

0.1

0.15

0.2

n

P(
n,

t)

distribution function at t=25

+ 0 50 * 0 51 N0 10 tEND 50 200 realizations %t 1

D.4. SOLUTIONS FOR CHAPTER 4 437

0 10 20 30 40 50
10

15

20

25

t

fir
st

 m
om

en
t

0 10 20 30 40 50
!4000

!2000

0

2000

4000

6000

8000

t

se
co

nd
 m

om
en

t

0 10 20 30 40 500

500

1000

1500

2000

t

va
ria

nc
e

0 5 10 15 20 250

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

P(
n,

t)

distribution function at t=2

0 10 20 30 40 50 60 700

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

n

P(
n,

t)

distribution function at t=10

SOLUTION TO EXERCISE 6.2
Non-linear one-step process - growth of a competitive population - onestepfast.m, nonlingrowthmas-
ter.m
This time the transition rates are r n *n and g n +n &n n 1 . The solutions for the first moment are

n t
* +
&

and n t 0

Here are some examples of the simulation:

LEFT: + 0 50 * 1 0 & 0 05 N0 100 tEND 500 1 realization %t 2 and
RIGHT: + 0 1 * 1 1 & 0 01 N0 120 tEND 30 1 realization %t 1

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

5 10 15 20 25 30
70

80

90

100

110

120

130

+ 0 1 * 1 1 & 0 01 N0 120 tEND 10 100 realizations %t 1

438 APPENDIX D. SOLUTIONS TO EXERCISES

0 1 2 3 4 5 6 7 8 9 10
98

100

102

104

106

108

110

112

114

116

118

120

t

fir
st

 m
om

en
t

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

t

va
ria

nc
e

70 80 90 100 110 120 130
0

0.01

0.02

0.03

0.04

0.05

0.06

n

P(
n,

t)

distribution function at t=10

60 70 80 90 100 110 120 130 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

n

P(
n)

estimated normalized stationary distribution function

SOLUTION TO EXERCISE 6.3
The Random Telegraph Process - onestepfast.m, telegraphmaster.m

First of all you have to rewrite the master-equation into the known form. Therefore you have to identify the
transition rates as

r n an and g n b 1 n
Some analytical results:

n t n2 t
a

a b
Here are some results of the simulation:

LEFT: a 0 1 b 0 9 N0 1 tEND 10 1 realization %t 1 and
RIGHT: a 0 1 b 0 9 N0 1 tEND 100 1 realization %t 1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D.4. SOLUTIONS FOR CHAPTER 4 439

a 0 1 b 0 9 N0 1 tEND 50 100 realizations %t 1
You can see that the first and the second moment have the same value, like expected by the analytical results.
The probability distribution in the last figure shows P 0 and P 1 .

0 5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

fir
st

 m
om

en
t

0 5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

se
co

nd
 m

om
en

t

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t

va
ria

nc
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

P(
n)

estimated normalized stationary distribution function

a 0 1 b 0 9 N0 1 tEND 10 100 realizations %t 0 2
The left figure shows a patch plot of the correlation matrix. The colorbar identifies the colors with the corre-
sponding values of the correlation matrix. The red line indicates the normalized second moment n t n t
n2 t The right figure displays five correlation functions with a fixed t and varying time difference t t . As
expected the correlation decays exponentially and the correlation length i about 1 a b (see asssignment).

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50
 Patch Plot of Correlation matrix

t

co
rre

la
tio

n
co

ef
fic

ie
nt

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1
 some correlation functions (absolute values)

time t

no
rm

. c
or

r.
co

ef
f.

<n
(t)

n(
t´)

>

SOLUTION TO EXERCISE 6.4

440 APPENDIX D. SOLUTIONS TO EXERCISES

Monomolecular Chemical Reaction A X - onestepfast.m, reactionmaster.m
First of all let us calculate the stationary distribution here as an example.

Pstat n

n 1

i 0
g i

n

i 1
r i

Pstat 0
An

n!kn Pstat 0

and

.

i 0
Pstat i Pstat 0

.

i 1
Pstat i Pstat 0

.

i 1

Ai

i!ki Pstat 0

Pstat 0 1 eAk 1 Pstat 0 eAk

and therefore

Pstat 0 e Ak Pstat n
An

n!
e Ak

The rest of the analytical results are given in the assignment, we don not repeat them here.
Here are some examples of the simulation:

k 1 A 100 N0 100 tEND 80 1 realization

0 10 20 30 40 50 60 70 80
70

80

90

100

110

120

130

k 1 A 100 N0 100 tEND 50 100 realizations %t 1

0 5 10 15 20 25 30 35 40 45 50

96

97

98

99

100

101

102

103

t

fir
st

 m
om

en
t

0 5 10 15 20 25 30 35 40 45 50

0.94

0.96

0.98

1

1.02

1.04

1.06

x 104

t

se
co

nd
 m

om
en

t

D.5. SOLUTIONS FOR CHAPTER 5 441

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

t

va
ria

nc
e

60 70 80 90 100 110 120 130 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

n

P(
n)

estimated normalized stationary distribution function

The red line in the right figure is a Poisson distribution (which is the analytical result for the stationary distribu-
tion for this process.) with mean 100. You can see the excellent agreement with the simulated curve.

D.5 Solutions for Chapter 5

SOLUTION TO EXERCISE 7.1

Johnson Noise - sdeornstein.m

First of all you have to identify the parameters (functions) q and D of the SDE form used in the lecture:

q 1 , and D c

Some simulation results:

i0 0 q 1 D 1 tEND 1000 %t 0 2 1000 realizations
The last figure on the right is a simulation for different time discretizations %t 0 5 0 2 and 0 1 using 2000
realizations and tEND 100.

!200 0 200 400 600 800 1000 1200
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

time

<x
(t)

>

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

<v
ar

(t)
>

442 APPENDIX D. SOLUTIONS TO EXERCISES

0 200 400 600 800 1000
!4

!3

!2

!1

0

1

2

3

time

x(
t)

One realization of the process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
Ornstein!Uhlenbeck process

time step

<x
2 >

D.6. SOLUTIONS FOR CHAPTER 6 443

i0 0 q 0 01 D 100 tEND 250 %t 0 2 100 realizations

0 50 100 150 200 250
!60

!40

!20

0

20

40

60

80

100

120

time

x(
t)

One realization of the process

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

time

<v
ar

(t)
>

!50 0 50 100 150 200 250 300
!60

!40

!20

0

20

40

60

80

time

<x
(t)

>

D.6 Solutions for Chapter 6

SOLUTION TO EXERCISE ??

D.7 Solutions for Chapter 7

444 APPENDIX D. SOLUTIONS TO EXERCISES

Bibliography

Chan, T.F., Golub, G.H. und LeVeque, R.J. algorithms for computing the sample variance: analysis and recommenda-
tions. The American Statistician, 37(3):242, 1983.

Feller, William. Introduction to Probability Theory and its Applications, Band II. J. Wiley & Sons, 1971.

Kalos, Malvin H. und Whitlock, Paula A. Monte Carlo Methods, Volume I: Basics, Band I. John Wiley & Sons, 1986.
no volume II published.

445

446 BIBLIOGRAPHY

Appendix E

GNU Free Documentation License,
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with

447

448 APPENDIX E. GNU FREE DOCUMENTATION LICENSE, VERSION 1.1, MARCH 2000

modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use

449

technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions

450 APPENDIX E. GNU FREE DOCUMENTATION LICENSE, VERSION 1.1, MARCH 2000

(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to

it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements"
or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a

451

passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or

452 APPENDIX E. GNU FREE DOCUMENTATION LICENSE, VERSION 1.1, MARCH 2000

distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

Appendix F

GNU GENERAL PUBLIC LICENSE,
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

453

454 APPENDIX F. GNU GENERAL PUBLIC LICENSE, VERSION 2, JUNE 1991

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

455

whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source

456 APPENDIX F. GNU GENERAL PUBLIC LICENSE, VERSION 2, JUNE 1991

code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

457

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

458 APPENDIX F. GNU GENERAL PUBLIC LICENSE, VERSION 2, JUNE 1991

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Index

2D plots, 99
3D plots, 110

Applet package, 86

barplots, 100
Biss-AWT, 10

C in Java, see native code in Jav
C++ in Java, see native code in Jav
CJ, 8
class variables, 46
CLASSPATH, 22
classpath, 22
color models, 109
color setting, 94
complex numbers, 71
constants, 46

debugging, 75

Emacs, 9
empty package, 21
errorbar plots, 100

final keyword, 46
Fortran to Java, 9
Freebuilder, 9
function plots, 100

Gaussian random numbers, 83
GCJ, 8
GJ, 8
Gnuplot, 111
GuavaC, 8

histogram plots, 101

import statement, 21

Java 3D, 111
Java Numerical Library, 10
Java Workshop, 9
JDE, 9
JDK, 8, 64

documentation, 64
Jikes, 8
JNL, 10, 71

complex numbers, 71
list of functions, 71

JSci, 10

Kaffe, 8

modifiers, 46, 47
mpEdit, 9
MRJ, 8

native code in Java, 75
Netbeans, 9
Netscape, 9

packages, 21
postscript files and TEX, 109
printing from an applet, 109
Ptolemy, 10, 94
Ptplot, 94
ptplot, 10
public modifier, 46

random numbers
integer valued, 83

SciVis, 111
Simplicity for Java, 9
simulation package, 10, 99
Swing, 10
Swing and AWT, 86

TOBA, 9
tools for Java, 8

variable modifiers, 47

XEmacs, 9

459

